Fault Diagnosis using eXplainable AI: a Transfer Learning-based Approach
for Rotating Machinery exploiting Augmented Synthetic Data
- URL: http://arxiv.org/abs/2210.02974v1
- Date: Thu, 6 Oct 2022 15:02:35 GMT
- Title: Fault Diagnosis using eXplainable AI: a Transfer Learning-based Approach
for Rotating Machinery exploiting Augmented Synthetic Data
- Authors: Lucas Costa Brito, Gian Antonio Susto Jorge Nei Brito, Marcus Antonio
Viana Duarte
- Abstract summary: FaultD-XAI is a generic and interpretable approach for classifying faults in rotating machinery based on transfer learning.
To provide scalability using transfer learning, synthetic vibration signals are created mimicking the characteristic behavior of failures in operation.
The proposed approach not only obtained promising diagnostic performance, but was also able to learn characteristics used by experts to identify conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is one of the approaches that has been proposed
to analyze the collected data (e.g., vibration signals) providing a diagnosis
of the asset's operating condition. It is known that models trained with
labeled data (supervised) achieve excellent results, but two main problems make
their application in production processes difficult: (i) impossibility or long
time to obtain a sample of all operational conditions (since faults seldom
happen) and (ii) high cost of experts to label all acquired data. Another
limitating factor for the applicability of AI approaches in this context is the
lack of interpretability of the models (black-boxes), which reduces the
confidence of the diagnosis and trust/adoption from users. To overcome these
problems, a new generic and interpretable approach for classifying faults in
rotating machinery based on transfer learning from augmented synthetic data to
real rotating machinery is here proposed, namelly FaultD-XAI (Fault Diagnosis
using eXplainable AI). To provide scalability using transfer learning,
synthetic vibration signals are created mimicking the characteristic behavior
of failures in operation. The application of Gradient-weighted Class Activation
Mapping (Grad-CAM) with 1D Convolutional Neural Network (1D CNN) allows the
interpretation of results, supporting the user in decision making and
increasing diagnostic confidence. The proposed approach not only obtained
promising diagnostic performance, but was also able to learn characteristics
used by experts to identify conditions in a source domain and apply them in
another target domain. The experimental results suggest a promising approach on
exploiting transfer learning, synthetic data and explainable artificial
intelligence for fault diagnosis. Lastly, to guarantee reproducibility and
foster research in the field, the developed dataset is made publicly available.
Related papers
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
Fault detection and diagnosis of electrical motors is of utmost importance in ensuring the safe and reliable operation of industrial systems.
The existing data-driven deep learning approaches for machine fault diagnosis rely extensively on huge amounts of labeled samples.
We propose a foundational model-based Active Learning framework that utilizes less amount of labeled samples.
arXiv Detail & Related papers (2023-11-27T03:25:12Z) - An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation [0.3222802562733786]
We leverage a deep learning-based method for the automatic diagnosis of schizophrenia using EEG brain recordings.
This approach utilizes generative data augmentation, a powerful technique that enhances the accuracy of the diagnosis.
arXiv Detail & Related papers (2023-10-25T12:55:16Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
We study the effectiveness of data and model scaling and cross-dataset knowledge transfer in a real-world pathology classification task.
We identify the challenges of possible negative transfer and emphasize the significance of some key components.
Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
arXiv Detail & Related papers (2023-09-19T20:09:15Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Application of federated learning techniques for arrhythmia
classification using 12-lead ECG signals [0.11184789007828977]
This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG.
We demonstrated comparable performance to models trained using CL, IID, and non-IID approaches.
arXiv Detail & Related papers (2022-08-23T14:21:16Z) - Detecting Autism Spectrum Disorder using Machine Learning [3.2861753207533937]
Sequential minimal optimization (SMO) based Support Vector Machines (SVM) classifier outperforms all other benchmark machine learning algorithms.
Relief Attributes algorithm is the best to identify the most significant attributes in ASD datasets.
arXiv Detail & Related papers (2020-09-30T08:33:12Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.