Detecting Autism Spectrum Disorder using Machine Learning
- URL: http://arxiv.org/abs/2009.14499v1
- Date: Wed, 30 Sep 2020 08:33:12 GMT
- Title: Detecting Autism Spectrum Disorder using Machine Learning
- Authors: Md Delowar Hossain, Muhammad Ashad Kabir, Adnan Anwar, Md Zahidul
Islam
- Abstract summary: Sequential minimal optimization (SMO) based Support Vector Machines (SVM) classifier outperforms all other benchmark machine learning algorithms.
Relief Attributes algorithm is the best to identify the most significant attributes in ASD datasets.
- Score: 3.2861753207533937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autism Spectrum Disorder (ASD), which is a neuro development disorder, is
often accompanied by sensory issues such an over sensitivity or under
sensitivity to sounds and smells or touch. Although its main cause is genetics
in nature, early detection and treatment can help to improve the conditions. In
recent years, machine learning based intelligent diagnosis has been evolved to
complement the traditional clinical methods which can be time consuming and
expensive. The focus of this paper is to find out the most significant traits
and automate the diagnosis process using available classification techniques
for improved diagnosis purpose. We have analyzed ASD datasets of Toddler,
Child, Adolescent and Adult. We determine the best performing classifier for
these binary datasets using the evaluation metrics recall, precision,
F-measures and classification errors. Our finding shows that Sequential minimal
optimization (SMO) based Support Vector Machines (SVM) classifier outperforms
all other benchmark machine learning algorithms in terms of accuracy during the
detection of ASD cases and produces less classification errors compared to
other algorithms. Also, we find that Relief Attributes algorithm is the best to
identify the most significant attributes in ASD datasets.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals.
There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy.
Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data.
This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working.
arXiv Detail & Related papers (2024-09-19T23:08:09Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Introducing SSBD+ Dataset with a Convolutional Pipeline for detecting
Self-Stimulatory Behaviours in Children using raw videos [1.1874952582465603]
The authors propose a novel pipelined deep learning architecture to detect certain self-stimulatory behaviors that help in the diagnosis of autism spectrum disorder (ASD)
An overall accuracy of around 81% was achieved from the proposed pipeline model that is targeted for real-time and hands-free automated diagnosis.
arXiv Detail & Related papers (2023-11-25T16:57:24Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Comparison of Probabilistic Deep Learning Methods for Autism Detection [0.0]
Autism Spectrum Disorder (ASD) is one neuro developmental disorder that is now widespread in the world.
Early detection of the disorder helps in the onset treatment and helps one to lead a normal life.
arXiv Detail & Related papers (2023-03-09T17:49:37Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
The aim of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from speech signal.
The use of information about outlier and Fractal Dimension features improves the system performance.
arXiv Detail & Related papers (2022-03-21T09:57:20Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.