論文の概要: Edge-Varying Fourier Graph Networks for Multivariate Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2210.03093v2
- Date: Sun, 9 Oct 2022 10:53:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 11:52:00.875441
- Title: Edge-Varying Fourier Graph Networks for Multivariate Time Series
Forecasting
- Title(参考訳): 多変量時系列予測のためのエッジ可変フーリエグラフネットワーク
- Authors: Kun Yi and Qi Zhang and Liang Hu and Hui He and Ning An and LongBing
Cao and ZhenDong Niu
- Abstract要約: 我々は時系列変数のための効率的なグラフ畳み込みネットワークを構築した。
MTS分析と予測のために,高効率スケールフリーパラメータ学習手法を導出する。
実験により、EV-FGNは7つの実世界のMTSデータセットで最先端の手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 46.76885997673142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The key problem in multivariate time series (MTS) analysis and forecasting
aims to disclose the underlying couplings between variables that drive the
co-movements. Considerable recent successful MTS methods are built with graph
neural networks (GNNs) due to their essential capacity for relational modeling.
However, previous work often used a static graph structure of time-series
variables for modeling MTS failing to capture their ever-changing correlations
over time. To this end, a fully-connected supra-graph connecting any two
variables at any two timestamps is adaptively learned to capture the
high-resolution variable dependencies via an efficient graph convolutional
network. Specifically, we construct the Edge-Varying Fourier Graph Networks
(EV-FGN) equipped with Fourier Graph Shift Operator (FGSO) which efficiently
performs graph convolution in the frequency domain. As a result, a
high-efficiency scale-free parameter learning scheme is derived for MTS
analysis and forecasting according to the convolution theorem. Extensive
experiments show that EV-FGN outperforms state-of-the-art methods on seven
real-world MTS datasets.
- Abstract(参考訳): 多変量時系列解析と予測の鍵となる問題は、共動を駆動する変数間の下位結合を明らかにすることである。
グラフニューラルネットワーク(GNN)は、リレーショナルモデリングに欠かせない能力のため、近年成功しているMSS手法である。
しかし、以前の研究では、時系列変数の静的グラフ構造を使ってMSSをモデル化したが、時間とともに変化する相関を捉えられなかった。
この目的のために、任意の2つの変数を2つのタイムスタンプで接続する完全連結な超グラフが適応的に学習され、効率的なグラフ畳み込みネットワークを介して高分解能な変数依存性をキャプチャする。
具体的には、周波数領域におけるグラフ畳み込みを効率的に行うFourier Graph Shift Operator (FGSO) を備えたEdge-Varying Fourier Graph Networks (EV-FGN) を構築する。
その結果、畳み込み定理に従い、mts分析と予測のための高効率なスケールフリーパラメータ学習法が導出される。
大規模な実験により、EV-FGNは7つの実世界のMSSデータセットで最先端の手法より優れていることが示された。
関連論文リスト
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
完全時空間グラフニューラルネットワーク(FC-STGNN)という新しい手法を提案する。
グラフ構築のために、時間的距離に基づいて、すべてのタイムスタンプにセンサーを接続する減衰グラフを設計する。
グラフ畳み込みのために,移動プールGNN層を用いたFCグラフ畳み込みを考案し,ST依存性を効果的に把握し,効率的な表現を学習する。
論文 参考訳(メタデータ) (2023-09-11T08:44:07Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
我々は,変分オートエンコーダ(VAE)を利用して,ノード時系列の特徴とグラフ構造の両方に欠落する値を予測するPoGeVonという新しいモデルを設計する。
実験の結果,ベースライン上でのモデルの有効性が示された。
論文 参考訳(メタデータ) (2023-05-29T21:11:34Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF)は、グラフ学習と予測に結合する新しいディープラーニングモデルである。
本稿では,スムーズ・スパース・ユニット (SSU) という新しい手法を提案する。
我々のモデルは、訓練可能な小さなパラメータで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-01-24T13:35:37Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNNはシリーズ間の相関と時間的依存関係をキャプチャする。
畳み込みと逐次学習モジュールによって効果的に予測できる。
StemGNNの有効性を示すために、10の実世界のデータセットに関する広範な実験を実施します。
論文 参考訳(メタデータ) (2021-03-13T13:44:20Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
グラフニューラルネットワークは、十分な高品質のトレーニングデータがないために、現実のシナリオでは実用的ではないかもしれない。
我々は時間的データを解析するための数学的に設計された新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2020-12-06T19:49:55Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。