論文の概要: Are Representations Built from the Ground Up? An Empirical Examination
of Local Composition in Language Models
- arxiv url: http://arxiv.org/abs/2210.03575v1
- Date: Fri, 7 Oct 2022 14:21:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 14:00:53.015496
- Title: Are Representations Built from the Ground Up? An Empirical Examination
of Local Composition in Language Models
- Title(参考訳): 表現はゼロから構築されているか?
言語モデルにおける局所構成の実証的研究
- Authors: Emmy Liu and Graham Neubig
- Abstract要約: 構成的・非構成的句を表現することは言語理解にとって重要である。
まず,より長いフレーズのLM-内部表現を,その構成成分から予測する問題を定式化する。
意味的構成性の人間の判断と相関する予測精度を期待するが、大部分はそうではない。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compositionality, the phenomenon where the meaning of a phrase can be derived
from its constituent parts, is a hallmark of human language. At the same time,
many phrases are non-compositional, carrying a meaning beyond that of each part
in isolation. Representing both of these types of phrases is critical for
language understanding, but it is an open question whether modern language
models (LMs) learn to do so; in this work we examine this question. We first
formulate a problem of predicting the LM-internal representations of longer
phrases given those of their constituents. We find that the representation of a
parent phrase can be predicted with some accuracy given an affine
transformation of its children. While we would expect the predictive accuracy
to correlate with human judgments of semantic compositionality, we find this is
largely not the case, indicating that LMs may not accurately distinguish
between compositional and non-compositional phrases. We perform a variety of
analyses, shedding light on when different varieties of LMs do and do not
generate compositional representations, and discuss implications for future
modeling work.
- Abstract(参考訳): 構成性は、句の意味をその構成部分から導き出すことができる現象であり、人間の言葉の目印である。
同時に、多くのフレーズは非結合的であり、独立して各部分の意味以上の意味を持つ。
これら2つのフレーズを表現することは言語理解にとって重要であるが、現代言語モデル(LM)がそうすることを学ぶかどうかという公然の疑問である。
まず,より長いフレーズのLM-内部表現を,その構成成分から予測する問題を定式化する。
親語句の表現は,子供のアフィン変換によってある程度の精度で予測できることがわかった。
意味的構成性の人間の判断と相関する予測精度は期待できるが、大半がそうではなく、LMが構成的フレーズと非構成的フレーズを正確に区別できないことを示している。
我々は様々な分析を行い、異なる種類のLMがいつ合成表現を発生しないのかを明かし、将来のモデリング作業における影響について議論する。
関連論文リスト
- Investigating Idiomaticity in Word Representations [9.208145117062339]
我々は2つの言語(英語とポルトガル語)における様々な水準の慣用性を持つ名詞に焦点をあてる。
そこで本研究では,各名詞の音韻性判定を含む最小対のデータセットについて,タイプレベルとトークンレベルの両方で示す。
AffinityとScaled similarityの詳細なメトリクスセットを定義し、モデルが慣用性の変化につながる可能性のある摂動に対してどれほど敏感であるかを判断する。
論文 参考訳(メタデータ) (2024-11-04T21:05:01Z) - Do Pre-Trained Language Models Detect and Understand Semantic Underspecification? Ask the DUST! [4.1970767174840455]
本研究では,事前訓練された言語モデル(LM)が不特定文を正しく識別し,解釈するかどうかを検討する。
実験の結果,不特定文の解釈においては,不特定文の理論的説明が予測する内容とは対照的に,不確実性はほとんど認められなかった。
論文 参考訳(メタデータ) (2024-02-19T19:49:29Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
文意味構造の解析において, GPT-3, ChatGPT, および GPT-4 モデルの成功と限界について検討した。
モデルはAMRの基本形式を確実に再現でき、しばしばコアイベント、引数、修飾子構造をキャプチャできる。
全体としては,これらのモデルではセマンティック構造の側面を捉えることができるが,完全に正確なセマンティック解析や解析をサポートする能力には重要な制限が残されている。
論文 参考訳(メタデータ) (2023-10-26T21:47:59Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - The Language Model Understood the Prompt was Ambiguous: Probing
Syntactic Uncertainty Through Generation [23.711953448400514]
このような分析に対して,ニューラルネットワークモデル(LM)がどの程度不確実性を示すかを調べる。
LMは複数の解析を同時に追跡できることがわかった。
曖昧な手がかりに対する応答として、LMは正しい解釈を選択することが多いが、時々エラーは改善の潜在的な領域を示す。
論文 参考訳(メタデータ) (2021-09-16T10:27:05Z) - Provable Limitations of Acquiring Meaning from Ungrounded Form: What
will Future Language Models Understand? [87.20342701232869]
未知のシステムが意味を習得する能力について検討する。
アサーションによってシステムが等価性のような意味関係を保存する表現をエミュレートできるかどうか検討する。
言語内のすべての表現が参照的に透明であれば,アサーションによってセマンティックエミュレーションが可能になる。
しかし、言語が変数バインディングのような非透過的なパターンを使用する場合、エミュレーションは計算不能な問題になる可能性がある。
論文 参考訳(メタデータ) (2021-04-22T01:00:17Z) - Discourse structure interacts with reference but not syntax in neural
language models [17.995905582226463]
本研究では,異なる言語表現間の相互作用を学習する言語モデル(LM)の能力について検討する。
人間とは対照的に、暗黙の因果関係は文法ではなく、参照行動にのみ影響を及ぼす。
以上の結果から,LMの行動は,学習した言論表現だけでなく,統語的合意にも矛盾する可能性が示唆された。
論文 参考訳(メタデータ) (2020-10-10T03:14:00Z) - Assessing Phrasal Representation and Composition in Transformers [13.460125148455143]
ディープトランスモデルはNLPタスクのパフォーマンスを新たな限界に押し上げた。
本稿では,最先端の事前学習型トランスにおけるフレーズ表現の系統的解析を行う。
これらのモデルにおける句表現は、単語の内容に大きく依存しており、ニュアンスな構成の証拠はほとんどない。
論文 参考訳(メタデータ) (2020-10-08T04:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。