"Help Me Help the AI": Understanding How Explainability Can Support
Human-AI Interaction
- URL: http://arxiv.org/abs/2210.03735v1
- Date: Sun, 2 Oct 2022 20:17:11 GMT
- Title: "Help Me Help the AI": Understanding How Explainability Can Support
Human-AI Interaction
- Authors: Sunnie S. Y. Kim and Elizabeth Anne Watkins and Olga Russakovsky and
Ruth Fong and Andr\'es Monroy-Hern\'andez
- Abstract summary: We conducted a study of a real-world AI application via interviews with 20 end-users of Merlin, a bird-identification app.
We found that people express a need for practically useful information that can improve their collaboration with the AI system.
We also assessed end-users' perceptions of existing XAI approaches, finding that they prefer part-based explanations.
- Score: 22.00514030715286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the proliferation of explainable AI (XAI) methods, little is
understood about end-users' explainability needs. This gap is critical, because
end-users may have needs that XAI methods should but don't yet support. To
address this gap and contribute to understanding how explainability can support
human-AI interaction, we conducted a study of a real-world AI application via
interviews with 20 end-users of Merlin, a bird-identification app. We found
that people express a need for practically useful information that can improve
their collaboration with the AI system, and intend to use XAI explanations for
calibrating trust, improving their task skills, changing their behavior to
supply better inputs to the AI system, and giving constructive feedback to
developers. We also assessed end-users' perceptions of existing XAI approaches,
finding that they prefer part-based explanations. Finally, we discuss
implications of our findings and provide recommendations for future designs of
XAI, specifically XAI for human-AI collaboration.
Related papers
- Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration [11.824688232910193]
We run a study on AI-assisted decision-making in which humans were supported by XAI.
Our findings reveal a misinformation effect when incorrect explanations accompany correct AI advice.
This effect causes humans to infer flawed reasoning strategies, hindering task execution and demonstrating impaired procedural knowledge.
arXiv Detail & Related papers (2024-09-19T14:34:20Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision.
Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users.
arXiv Detail & Related papers (2023-01-13T01:08:49Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - Transcending XAI Algorithm Boundaries through End-User-Inspired Design [27.864338632191608]
Lacking explainability-focused functional support for end users may hinder the safe and responsible use of AI in high-stakes domains.
Our work shows that grounding the technical problem in end users' use of XAI can inspire new research questions.
Such end-user-inspired research questions have the potential to promote social good by democratizing AI and ensuring the responsible use of AI in critical domains.
arXiv Detail & Related papers (2022-08-18T09:44:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Designer-User Communication for XAI: An epistemological approach to
discuss XAI design [4.169915659794568]
We take the Signifying Message as our conceptual tool to structure and discuss XAI scenarios.
We experiment with its use for the discussion of a healthcare AI-System.
arXiv Detail & Related papers (2021-05-17T13:18:57Z) - Questioning the AI: Informing Design Practices for Explainable AI User
Experiences [33.81809180549226]
A surge of interest in explainable AI (XAI) has led to a vast collection of algorithmic work on the topic.
We seek to identify gaps between the current XAI algorithmic work and practices to create explainable AI products.
We develop an algorithm-informed XAI question bank in which user needs for explainability are represented.
arXiv Detail & Related papers (2020-01-08T12:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.