Is Conversational XAI All You Need? Human-AI Decision Making With a Conversational XAI Assistant
- URL: http://arxiv.org/abs/2501.17546v1
- Date: Wed, 29 Jan 2025 10:29:27 GMT
- Title: Is Conversational XAI All You Need? Human-AI Decision Making With a Conversational XAI Assistant
- Authors: Gaole He, Nilay Aishwarya, Ujwal Gadiraju,
- Abstract summary: We argue that augmenting existing XAI methods with conversational user interfaces can increase user engagement and boost user understanding of the AI system.
We found that the conversational XAI interface can bring about a better understanding of the AI system among users and higher user trust.
However, users of both the XAI dashboard and conversational XAI interfaces showed clear overreliance on the AI system.
- Score: 11.690126756498223
- License:
- Abstract: Explainable artificial intelligence (XAI) methods are being proposed to help interpret and understand how AI systems reach specific predictions. Inspired by prior work on conversational user interfaces, we argue that augmenting existing XAI methods with conversational user interfaces can increase user engagement and boost user understanding of the AI system. In this paper, we explored the impact of a conversational XAI interface on users' understanding of the AI system, their trust, and reliance on the AI system. In comparison to an XAI dashboard, we found that the conversational XAI interface can bring about a better understanding of the AI system among users and higher user trust. However, users of both the XAI dashboard and conversational XAI interfaces showed clear overreliance on the AI system. Enhanced conversations powered by large language model (LLM) agents amplified over-reliance. Based on our findings, we reason that the potential cause of such overreliance is the illusion of explanatory depth that is concomitant with both XAI interfaces. Our findings have important implications for designing effective conversational XAI interfaces to facilitate appropriate reliance and improve human-AI collaboration. Code can be found at https://github.com/delftcrowd/IUI2025_ConvXAI
Related papers
- Investigating the Role of Explainability and AI Literacy in User Compliance [2.8623940003518156]
We find that users' compliance increases with the introduction of XAI but is also affected by AI literacy.
We also find that the relationships between AI literacy XAI and users' compliance are mediated by the users' mental model of AI.
arXiv Detail & Related papers (2024-06-18T14:28:12Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
The number and complexity of personalised and user-centred approaches to XAI have rapidly grown in recent years.
It emerged that user-centred approaches to XAI positively affect the interaction between users and systems.
We propose an assessment task to objectively and quantitatively measure the goodness of XAI systems.
arXiv Detail & Related papers (2023-12-07T15:49:39Z) - ConvXAI: Delivering Heterogeneous AI Explanations via Conversations to
Support Human-AI Scientific Writing [45.187790784934734]
This paper focuses on Conversational XAI for AI-assisted scientific writing tasks.
We identify four design rationales: "multifaceted", "controllability", "mix-initiative", "context-aware drill-down"
We incorporate them into an interactive prototype, ConvXAI, which facilitates heterogeneous AI explanations for scientific writing through dialogue.
arXiv Detail & Related papers (2023-05-16T19:48:49Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - "Help Me Help the AI": Understanding How Explainability Can Support
Human-AI Interaction [22.00514030715286]
We conducted a study of a real-world AI application via interviews with 20 end-users of Merlin, a bird-identification app.
We found that people express a need for practically useful information that can improve their collaboration with the AI system.
We also assessed end-users' perceptions of existing XAI approaches, finding that they prefer part-based explanations.
arXiv Detail & Related papers (2022-10-02T20:17:11Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Designer-User Communication for XAI: An epistemological approach to
discuss XAI design [4.169915659794568]
We take the Signifying Message as our conceptual tool to structure and discuss XAI scenarios.
We experiment with its use for the discussion of a healthcare AI-System.
arXiv Detail & Related papers (2021-05-17T13:18:57Z) - Questioning the AI: Informing Design Practices for Explainable AI User
Experiences [33.81809180549226]
A surge of interest in explainable AI (XAI) has led to a vast collection of algorithmic work on the topic.
We seek to identify gaps between the current XAI algorithmic work and practices to create explainable AI products.
We develop an algorithm-informed XAI question bank in which user needs for explainability are represented.
arXiv Detail & Related papers (2020-01-08T12:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.