Finding and Exploring Promising Search Space for the 0-1 Multidimensional Knapsack Problem
- URL: http://arxiv.org/abs/2210.03918v3
- Date: Mon, 27 May 2024 03:19:04 GMT
- Title: Finding and Exploring Promising Search Space for the 0-1 Multidimensional Knapsack Problem
- Authors: Jitao Xu, Hongbo Li, Minghao Yin,
- Abstract summary: We propose a novel algorithm combining evolutionary computation with the exact algorithm to solve the 0-1 MKP.
It maintains a set of solutions and utilizes the information from the population to extract good partial assignments.
It finds better solutions than the existing algorithms and provides new lower bounds for 10 large and hard instances.
- Score: 18.19836641663039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 0-1 Multidimensional Knapsack Problem (MKP) is a classical NP-hard combinatorial optimization problem with many engineering applications. In this paper, we propose a novel algorithm combining evolutionary computation with the exact algorithm to solve the 0-1 MKP. It maintains a set of solutions and utilizes the information from the population to extract good partial assignments. To find high-quality solutions, an exact algorithm is applied to explore the promising search space specified by the good partial assignments. The new solutions are used to update the population. Thus, the good partial assignments evolve towards a better direction with the improvement of the population. Extensive experimentation with commonly used benchmark sets shows that our algorithm outperforms the state-of-the-art heuristic algorithms, TPTEA and DQPSO, as well as the commercial solver CPlex. It finds better solutions than the existing algorithms and provides new lower bounds for 10 large and hard instances.
Related papers
- Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization [55.81991984375959]
In this work, we give a new technique for analyzing individualized privacy accounting via the following simple observation.
We obtain several improved algorithms for private optimization problems, including decomposable submodular and set algorithm cover.
arXiv Detail & Related papers (2024-05-28T19:02:30Z) - Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
Quality-Diversity (QD) algorithms aim to find a set of high-performing, yet diverse solutions.
This paper tries to shed some light on the optimization ability of QD algorithms via rigorous running time analysis.
arXiv Detail & Related papers (2024-01-19T07:40:24Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Self-adjusting optimization algorithm for solving the setunion knapsack
problem [0.3128201162068913]
The set-union knapsack problem (SUKP) is a constrained composed optimization problem.
We present two self-adjusting optimization algorithms for approximating SUKP from items and elements perspective respectively.
arXiv Detail & Related papers (2022-01-23T14:15:49Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Evolutionary Algorithm and Multifactorial Evolutionary Algorithm on
Clustered Shortest-Path Tree problem [2.578242050187029]
Clustered Shortest-Path Tree Problem (CluSPT) is an NP-hard problem.
To enhance the performance of the search process, two approaches are proposed.
arXiv Detail & Related papers (2020-10-19T08:37:18Z) - Towards Solving Large-scale Expensive Optimization Problems Efficiently
Using Coordinate Descent Algorithm [3.1600708674008393]
We propose a modified Coordinate Descent algorithm (MCD) to tackle LSEGO problems with a limited computational budget.
Our proposed algorithm benefits from two leading steps, namely, finding the region of interest and then shrinkage of the search space by folding it into the half with exponential speed.
The proposed algorithm is compared with cooperative co-evolution with delta grouping on 20 benchmark functions with dimension 1000.
arXiv Detail & Related papers (2020-03-07T22:48:38Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.