論文の概要: ConstGCN: Constrained Transmission-based Graph Convolutional Networks
for Document-level Relation Extraction
- arxiv url: http://arxiv.org/abs/2210.03949v1
- Date: Sat, 8 Oct 2022 07:36:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 16:26:45.362345
- Title: ConstGCN: Constrained Transmission-based Graph Convolutional Networks
for Document-level Relation Extraction
- Title(参考訳): constgcn: 文書レベル関係抽出のための制約付き透過型グラフ畳み込みネットワーク
- Authors: Ji Qi, Bin Xu, Kaisheng Zeng, Jinxin Liu, Jifan Yu, Qi Gao, Juanzi Li,
Lei Hou
- Abstract要約: グラフニューラルネットワークによる文書レベルの関係抽出は、トレーニングと推論の基本的なグラフ構築ギャップに直面している。
本稿では,知識に基づく情報伝達を行う新しいグラフ畳み込みネットワークである$textbfConstGCN$を提案する。
実験の結果,本手法はDocREデータセットに対する従来のSOTA(State-of-the-art)アプローチよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 24.970508961370548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction with graph neural networks faces a
fundamental graph construction gap between training and inference - the golden
graph structure only available during training, which causes that most methods
adopt heuristic or syntactic rules to construct a prior graph as a pseudo
proxy. In this paper, we propose $\textbf{ConstGCN}$, a novel graph
convolutional network which performs knowledge-based information propagation
between entities along with all specific relation spaces without any prior
graph construction. Specifically, it updates the entity representation by
aggregating information from all other entities along with each relation space,
thus modeling the relation-aware spatial information. To control the
information flow passing through the indeterminate relation spaces, we propose
to constrain the propagation using transmitting scores learned from the Noise
Contrastive Estimation between fact triples. Experimental results show that our
method outperforms the previous state-of-the-art (SOTA) approaches on the DocRE
dataset.
- Abstract(参考訳): グラフニューラルネットワークによる文書レベルの関係抽出は、トレーニングと推論の基本的なグラフ構築ギャップに直面している。ゴールデングラフ構造はトレーニング時にのみ利用できるため、ほとんどのメソッドはヒューリスティックあるいは構文規則を採用して、擬似プロキシとして事前グラフを構築する。
本稿では,先行するグラフ構成を必要とせず,エンティティ間の知識に基づく情報伝達を行う新しいグラフ畳み込みネットワークである$\textbf{constgcn}$を提案する。
具体的には、関係空間に沿って他のすべてのエンティティから情報を集約することでエンティティ表現を更新し、関係認識空間情報をモデル化する。
非決定的な関係空間を通過する情報の流れを制御するために、ファクトトリプル間のノイズコントラスト推定から学習したスコアの伝達を用いて伝播を制約する。
実験の結果,本手法はDocREデータセットに対する従来のSOTA(State-of-the-art)アプローチよりも優れていることがわかった。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Knowledge Graph Embedding using Graph Convolutional Networks with
Relation-Aware Attention [3.803929794912623]
知識グラフ埋め込み法は、実体と関係の埋め込みを低次元空間で学習する。
さまざまな種類の情報を用いて実体と関係の特徴を学習する様々なグラフ畳み込みネットワーク手法が提案されている。
本稿では,関係情報を利用して隣接ノードの重み付けを計算し,エンティティと関係の埋め込みを学習する関係認識グラフ注意モデルを提案する。
論文 参考訳(メタデータ) (2021-02-14T17:19:44Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
半教師付き異常検出のためのスキップ接続付きグラフ畳み込みネットワークを提案する。
本モデルの有効性は,5つのベンチマークデータセットに対する広範な実験によって実証された。
論文 参考訳(メタデータ) (2020-10-20T13:45:47Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z) - Affinity Graph Supervision for Visual Recognition [35.35959846458965]
親和性グラフにおける重みの学習を指導する原理的手法を提案する。
我々の親和性監視は、手動でアノテートされた関係ラベルがなくても、オブジェクト間の関係回復を改善する。
我々は、ニューラルネットワークトレーニングのために、ミニバッチから構築されたグラフにも親和性学習を適用することができることを示した。
論文 参考訳(メタデータ) (2020-03-19T23:52:51Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。