Contact-aware Human Motion Forecasting
- URL: http://arxiv.org/abs/2210.03954v1
- Date: Sat, 8 Oct 2022 07:53:19 GMT
- Title: Contact-aware Human Motion Forecasting
- Authors: Wei Mao, Miaomiao Liu, Richard Hartley, Mathieu Salzmann
- Abstract summary: We tackle the task of scene-aware 3D human motion forecasting, which consists of predicting future human poses given a 3D scene and a past human motion.
Our approach outperforms the state-of-the-art human motion forecasting and human synthesis methods on both synthetic and real datasets.
- Score: 87.04827994793823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we tackle the task of scene-aware 3D human motion forecasting,
which consists of predicting future human poses given a 3D scene and a past
human motion. A key challenge of this task is to ensure consistency between the
human and the scene, accounting for human-scene interactions. Previous attempts
to do so model such interactions only implicitly, and thus tend to produce
artifacts such as "ghost motion" because of the lack of explicit constraints
between the local poses and the global motion. Here, by contrast, we propose to
explicitly model the human-scene contacts. To this end, we introduce
distance-based contact maps that capture the contact relationships between
every joint and every 3D scene point at each time instant. We then develop a
two-stage pipeline that first predicts the future contact maps from the past
ones and the scene point cloud, and then forecasts the future human poses by
conditioning them on the predicted contact maps. During training, we explicitly
encourage consistency between the global motion and the local poses via a prior
defined using the contact maps and future poses. Our approach outperforms the
state-of-the-art human motion forecasting and human synthesis methods on both
synthetic and real datasets. Our code is available at
https://github.com/wei-mao-2019/ContAwareMotionPred.
Related papers
- Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - Scene-aware Human Motion Forecasting via Mutual Distance Prediction [13.067687949642641]
We propose to model the human-scene interaction with the mutual distance between the human body and the scene.
Such mutual distances constrain both the local and global human motion, resulting in a whole-body motion constrained prediction.
We develop a pipeline with two sequential steps: predicting the future mutual distances first, followed by forecasting future human motion.
arXiv Detail & Related papers (2023-10-01T08:32:46Z) - Staged Contact-Aware Global Human Motion Forecasting [7.930326095134298]
Scene-aware global human motion forecasting is critical for manifold applications, including virtual reality, robotics, and sports.
We propose a STAGed contact-aware global human motion forecasting STAG, a novel three-stage pipeline for predicting global human motion in a 3D environment.
STAG achieves a 1.8% and 16.2% overall improvement in pose and trajectory prediction, respectively, on the scene-aware GTA-IM dataset.
arXiv Detail & Related papers (2023-09-16T10:47:48Z) - Learning Motion Priors for 4D Human Body Capture in 3D Scenes [81.54377747405812]
We propose LEMO: LEarning human MOtion priors for 4D human body capture.
We introduce a novel motion prior, which reduces the jitters exhibited by poses recovered over a sequence.
We also design a contact friction term and a contact-aware motion infiller obtained via per-instance self-supervised training.
With our pipeline, we demonstrate high-quality 4D human body capture, reconstructing smooth motions and physically plausible body-scene interactions.
arXiv Detail & Related papers (2021-08-23T20:47:09Z) - Synthesizing Long-Term 3D Human Motion and Interaction in 3D Scenes [27.443701512923177]
We propose to bridge human motion synthesis and scene affordance reasoning.
We present a hierarchical generative framework to synthesize long-term 3D human motion conditioning on the 3D scene structure.
Our experiments show significant improvements over previous approaches on generating natural and physically plausible human motion in a scene.
arXiv Detail & Related papers (2020-12-10T09:09:38Z) - PLACE: Proximity Learning of Articulation and Contact in 3D Environments [70.50782687884839]
We propose a novel interaction generation method, named PLACE, which explicitly models the proximity between the human body and the 3D scene around it.
Our perceptual study shows that PLACE significantly improves the state-of-the-art method, approaching the realism of real human-scene interaction.
arXiv Detail & Related papers (2020-08-12T21:00:10Z) - Socially and Contextually Aware Human Motion and Pose Forecasting [48.083060946226]
We propose a novel framework to tackle both tasks of human motion (or skeleton pose) and body skeleton pose forecasting.
We consider incorporating both scene and social contexts, as critical clues for this prediction task.
Our proposed framework achieves a superior performance compared to several baselines on two social datasets.
arXiv Detail & Related papers (2020-07-14T06:12:13Z) - Long-term Human Motion Prediction with Scene Context [60.096118270451974]
We propose a novel three-stage framework for predicting human motion.
Our method first samples multiple human motion goals, then plans 3D human paths towards each goal, and finally predicts 3D human pose sequences following each path.
arXiv Detail & Related papers (2020-07-07T17:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.