Social-Transmotion: Promptable Human Trajectory Prediction
- URL: http://arxiv.org/abs/2312.16168v2
- Date: Tue, 16 Apr 2024 21:05:24 GMT
- Title: Social-Transmotion: Promptable Human Trajectory Prediction
- Authors: Saeed Saadatnejad, Yang Gao, Kaouther Messaoud, Alexandre Alahi,
- Abstract summary: Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
- Score: 65.80068316170613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate human trajectory prediction is crucial for applications such as autonomous vehicles, robotics, and surveillance systems. Yet, existing models often fail to fully leverage the non-verbal social cues human subconsciously communicate when navigating the space. To address this, we introduce Social-Transmotion, a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior. We translate the idea of a prompt from Natural Language Processing (NLP) to the task of human trajectory prediction, where a prompt can be a sequence of x-y coordinates on the ground, bounding boxes in the image plane, or body pose keypoints in either 2D or 3D. This, in turn, augments trajectory data, leading to enhanced human trajectory prediction. Using masking technique, our model exhibits flexibility and adaptability by capturing spatiotemporal interactions between agents based on the available visual cues. We delve into the merits of using 2D versus 3D poses, and a limited set of poses. Additionally, we investigate the spatial and temporal attention map to identify which keypoints and time-steps in the sequence are vital for optimizing human trajectory prediction. Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY. The code is publicly available: https://github.com/vita-epfl/social-transmotion.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - Multimodal Sense-Informed Prediction of 3D Human Motions [16.71099574742631]
This work introduces a novel multi-modal sense-informed motion prediction approach, which conditions high-fidelity generation on two modal information.
The gaze information is regarded as the human intention, and combined with both motion and scene features, we construct a ternary intention-aware attention to supervise the generation.
On two real-world benchmarks, the proposed method achieves state-of-the-art performance both in 3D human pose and trajectory prediction.
arXiv Detail & Related papers (2024-05-05T12:38:10Z) - Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption [64.07607726562841]
Existing multi-person human reconstruction approaches mainly focus on recovering accurate poses or avoiding penetration.
In this work, we tackle the task of reconstructing closely interactive humans from a monocular video.
We propose to leverage knowledge from proxemic behavior and physics to compensate the lack of visual information.
arXiv Detail & Related papers (2024-04-17T11:55:45Z) - Humanoid Locomotion as Next Token Prediction [84.21335675130021]
Our model is a causal transformer trained via autoregressive prediction of sensorimotor trajectories.
We show that our model enables a full-sized humanoid to walk in San Francisco zero-shot.
Our model can transfer to the real world even when trained on only 27 hours of walking data, and can generalize commands not seen during training like walking backward.
arXiv Detail & Related papers (2024-02-29T18:57:37Z) - Robots That Can See: Leveraging Human Pose for Trajectory Prediction [30.919756497223343]
We present a Transformer based architecture to predict human future trajectories in human-centric environments.
The resulting model captures the inherent uncertainty for future human trajectory prediction.
We identify new agents with limited historical data as a major contributor to error and demonstrate the complementary nature of 3D skeletal poses in reducing prediction error.
arXiv Detail & Related papers (2023-09-29T13:02:56Z) - Pedestrian 3D Bounding Box Prediction [83.7135926821794]
We focus on 3D bounding boxes, which are reasonable estimates of humans without modeling complex motion details for autonomous vehicles.
We suggest this new problem and present a simple yet effective model for pedestrians' 3D bounding box prediction.
This method follows an encoder-decoder architecture based on recurrent neural networks.
arXiv Detail & Related papers (2022-06-28T17:59:45Z) - Development of Human Motion Prediction Strategy using Inception Residual
Block [1.0705399532413613]
We propose an Inception Residual Block (IRB) to detect temporal features in human poses.
Our main contribution is to propose a residual connection between input and the output of the inception block to have a continuity between the previously observed pose and the next predicted pose.
With this proposed architecture, it learns prior knowledge much better about human poses and we achieve much higher prediction accuracy as detailed in the paper.
arXiv Detail & Related papers (2021-08-09T12:49:48Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.