論文の概要: Dynamically meeting performance objectives for multiple services on a
service mesh
- arxiv url: http://arxiv.org/abs/2210.04002v1
- Date: Sat, 8 Oct 2022 11:54:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 18:21:21.745314
- Title: Dynamically meeting performance objectives for multiple services on a
service mesh
- Title(参考訳): サービスメッシュ上の複数のサービスのパフォーマンス目標を動的に満たす
- Authors: Forough Shahab Samani, Rolf Stadler
- Abstract要約: サービスプロバイダがさまざまな負荷下でエンドツーエンドの管理目標を達成するためのフレームワークを提案する。
サービス要求のエンドツーエンド遅延境界、スループット目標、サービス差別化など、さまざまな管理目標について検討する。
テストベッドではなくシミュレータ上で制御ポリシを計算し,学習プロセスを桁違いに高速化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a framework that lets a service provider achieve end-to-end
management objectives under varying load. Dynamic control actions are performed
by a reinforcement learning (RL) agent. Our work includes experimentation and
evaluation on a laboratory testbed where we have implemented basic information
services on a service mesh supported by the Istio and Kubernetes platforms. We
investigate different management objectives that include end-to-end delay
bounds on service requests, throughput objectives, and service differentiation.
These objectives are mapped onto reward functions that an RL agent learns to
optimize, by executing control actions, namely, request routing and request
blocking. We compute the control policies not on the testbed, but in a
simulator, which speeds up the learning process by orders of magnitude. In our
approach, the system model is learned on the testbed; it is then used to
instantiate the simulator, which produces near-optimal control policies for
various management objectives. The learned policies are then evaluated on the
testbed using unseen load patterns.
- Abstract(参考訳): サービスプロバイダがさまざまな負荷下でエンドツーエンドの管理目標を達成するためのフレームワークを提案する。
動的制御動作は強化学習(RL)エージェントによって実行される。
istioとkubernetesプラットフォームがサポートするサービスメッシュ上で、基本的な情報サービスを実装した実験室テストベッドの実験と評価も行っています。
サービス要求のエンドツーエンド遅延境界、スループット目標、サービス差別化など、さまざまな管理目標について検討する。
これらの目的は、RLエージェントが最適化するために学んだ報酬関数、すなわちリクエストルーティングとリクエストブロッキングの制御アクションを実行することでマッピングされる。
テストベッドではなくシミュレータ上で制御ポリシを計算し,学習プロセスを桁違いに高速化する。
提案手法では,システムモデルをテストベッド上で学習し,様々な管理目的に対して最適に近い制御ポリシを生成するシミュレータをインスタンス化する。
学習したポリシーは、見えないロードパターンを使用してテストベッドで評価される。
関連論文リスト
- PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - A Framework for dynamically meeting performance objectives on a service
mesh [0.0]
サービスメッシュ上で並列に実行される複数のサービスに対して,エンドツーエンドの管理目標を達成するためのフレームワークを提案する。
実資源に対して定期的に制御動作を行うエージェントの訓練に強化学習技術を適用した。
論文 参考訳(メタデータ) (2023-06-25T09:08:41Z) - Hypernetworks for Zero-shot Transfer in Reinforcement Learning [21.994654567458017]
Hypernetworksは、目に見えないさまざまなタスク条件で振る舞いを生成するように訓練されている。
この研究はメタRL、文脈RL、伝達学習に関連している。
提案手法は,マルチタスクおよびメタRLアプローチによるベースラインの大幅な改善を示す。
論文 参考訳(メタデータ) (2022-11-28T15:48:35Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
ゴール条件強化学習は、ナビゲーションや操作を含む幅広い領域のタスクを解決できる。
本研究では,学習時間における探索を用いて,中間状態を自動生成する遠隔目標獲得タスクを提案する。
E-stepはグラフ検索を用いて最適な経路点列を計画することに対応し、M-stepはそれらの経路点に到達するための目標条件付きポリシーを学習することを目的としている。
論文 参考訳(メタデータ) (2021-10-22T22:05:31Z) - A Meta-Reinforcement Learning Approach to Process Control [3.9146761527401424]
メタラーニングは、ニューラルネットワークなどのモデルを迅速に適応させ、新しいタスクを実行することを目的としています。
制御器を構築し,別の埋め込みニューラルネットワークを用いて潜在コンテキスト変数を用いて制御器をメタトレーニングする。
どちらの場合も、メタラーニングアルゴリズムは新しいタスクに非常に迅速に適応し、ゼロから訓練された通常のDRLコントローラよりも優れています。
論文 参考訳(メタデータ) (2021-03-25T18:20:56Z) - MUSBO: Model-based Uncertainty Regularized and Sample Efficient Batch
Optimization for Deployment Constrained Reinforcement Learning [108.79676336281211]
データ収集とオンライン学習のための新しいポリシーの継続的展開はコスト非効率か非現実的かのどちらかである。
モデルベース不確実性正規化とサンプル効率的なバッチ最適化という新しいアルゴリズム学習フレームワークを提案する。
本フレームワークは,各デプロイメントの新規で高品質なサンプルを発見し,効率的なデータ収集を実現する。
論文 参考訳(メタデータ) (2021-02-23T01:30:55Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
本稿では,タスクがサブタスクグラフによって特徴づけられるような,新しい数発のRL問題を提案し,対処する。
メタ政治を直接学習する代わりに、Subtask Graph Inferenceを使ったメタラーナーを開発した。
実験の結果,2つのグリッドワールド領域とStarCraft II環境において,提案手法が潜在タスクパラメータを正確に推定できることが確認された。
論文 参考訳(メタデータ) (2020-01-01T17:34:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。