論文の概要: Enhance Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic Masked World Model
- arxiv url: http://arxiv.org/abs/2210.04017v3
- Date: Thu, 9 May 2024 15:32:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 18:39:09.334878
- Title: Enhance Sample Efficiency and Robustness of End-to-end Urban Autonomous Driving via Semantic Masked World Model
- Title(参考訳): セマンティックマスク世界モデルによるエンドツーエンドの都市自律走行のサンプル効率とロバスト性
- Authors: Zeyu Gao, Yao Mu, Chen Chen, Jingliang Duan, Shengbo Eben Li, Ping Luo, Yanfeng Lu,
- Abstract要約: 本稿では,SEMantic Masked Recurrent World Model (SEM2)を提案する。
提案手法は, サンプル効率と入力順列に対するロバスト性の観点から, 最先端の手法よりも優れている。
- 参考スコア(独自算出の注目度): 38.722096508198106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end autonomous driving provides a feasible way to automatically maximize overall driving system performance by directly mapping the raw pixels from a front-facing camera to control signals. Recent advanced methods construct a latent world model to map the high dimensional observations into compact latent space. However, the latent states embedded by the world model proposed in previous works may contain a large amount of task-irrelevant information, resulting in low sampling efficiency and poor robustness to input perturbations. Meanwhile, the training data distribution is usually unbalanced, and the learned policy is challenging to cope with the corner cases during the driving process. To solve the above challenges, we present a SEMantic Masked recurrent world model (SEM2), which introduces a semantic filter to extract key driving-relevant features and make decisions via the filtered features, and is trained with a multi-source data sampler, which aggregates common data and multiple corner case data in a single batch, to balance the data distribution. Extensive experiments on CARLA show our method outperforms the state-of-the-art approaches in terms of sample efficiency and robustness to input permutations.
- Abstract(参考訳): エンドツーエンドの自律運転は、前面カメラから直接生の画素を信号にマッピングすることで、全体の運転システム性能を自動で最大化する手段を提供する。
最近の高度な手法は、高次元の観測結果をコンパクトな潜在空間にマッピングする潜在世界モデルを構築している。
しかし、従来の研究で提案された世界モデルに埋め込まれた潜伏状態には、大量のタスク関連情報が含まれており、サンプリング効率が低く、入力摂動に対する堅牢性が低い。
一方、トレーニングデータ分布は通常不均衡であり、学習されたポリシーは、運転中のコーナーケースに対処することが困難である。
上記の課題を解決するために,SEMantic Masked Recurrent World Model (SEM2)を提案する。セマンティック・マスクド・リカレント・ワールド・モデルでは,キー駆動関連特徴を抽出し,フィルタ機能を介して決定を行うセマンティック・フィルタを導入し,共通データと複数のコーナーケースデータを単一のバッチで集約するマルチソース・データ・サンプリング器を用いて訓練を行い,データの分散のバランスをとる。
CARLAの大規模実験により,提案手法はサンプル効率と入力順列に対する堅牢性の観点から,最先端の手法よりも優れていた。
関連論文リスト
- AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Automatic Identification of Driving Maneuver Patterns using a Robust
Hidden Semi-Markov Models [14.418658265828586]
冗長状態の削減とモデル推定の整合性向上を目的として,新しいロバストHDP-HSMM(rHDP-HSMM)法を提案する。
実測データを用いたシミュレーションとケーススタディを併用し, 提案したrHDP-HSMMの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-13T18:13:55Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - Fusing Pseudo Labels with Weak Supervision for Dynamic Traffic Scenarios [0.0]
我々は、異種データセットで訓練されたオブジェクト検出モデルから擬似ラベルをアマルガメートする弱い教師付きラベル統一パイプラインを導入する。
我々のパイプラインは、異なるデータセットからのラベルの集約、バイアスの修正、一般化の強化を通じて、統一されたラベル空間をエンゲージする。
我々は,統合ラベル空間を用いた単独物体検出モデルを再学習し,動的交通シナリオに精通した弾力性のあるモデルを構築した。
論文 参考訳(メタデータ) (2023-08-30T11:33:07Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Learning Sampling Distributions for Model Predictive Control [36.82905770866734]
モデル予測制御(MPC)に対するサンプリングに基づくアプローチは、MPCに対する現代のアプローチの基盤となっている。
我々は、学習された分布を最大限に活用できるように、潜在空間における全ての操作を実行することを提案する。
具体的には、学習問題を双方向の最適化として捉え、バックプロパゲーションスルータイムでコントローラをトレーニングする方法を示す。
論文 参考訳(メタデータ) (2022-12-05T20:35:36Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
ShiFTは、自動運転のための最大規模のマルチタスク合成データセットである。
曇り、雨と霧の強さ、昼の時間、車と歩行者の密度を個別に連続的に変化させる。
私たちのデータセットとベンチマークツールキットはwww.vis.xyz/shift.comで公開されています。
論文 参考訳(メタデータ) (2022-06-16T17:59:52Z) - Large Scale Autonomous Driving Scenarios Clustering with Self-supervised
Feature Extraction [6.804209932400134]
本稿では,自動車運転データの大規模集合に対する包括的データクラスタリングフレームワークを提案する。
提案手法では,トラヒック内エージェントオブジェクトとマップ情報の両方を含むトラフィック要素を網羅的に検討する。
新たに設計されたデータクラスタリング評価メトリクスは、データ拡張に基づくものであるため、精度評価には人間のラベル付きデータセットは必要ない。
論文 参考訳(メタデータ) (2021-03-30T06:22:40Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。