論文の概要: Multi-Modal Human Authentication Using Silhouettes, Gait and RGB
- arxiv url: http://arxiv.org/abs/2210.04050v1
- Date: Sat, 8 Oct 2022 15:17:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 17:19:05.294042
- Title: Multi-Modal Human Authentication Using Silhouettes, Gait and RGB
- Title(参考訳): シルエット・歩行・RGBを用いたマルチモーダルヒューマン認証
- Authors: Yuxiang Guo, Cheng Peng, Chun Pong Lau, Rama Chellappa
- Abstract要約: 全体認証は、遠隔生体認証のシナリオにおいて有望なアプローチである。
本稿では,RGBデータとシルエットデータを組み合わせたDME(Dual-Modal Ensemble)を提案する。
DME内では、従来の歩行分析に使用される二重ヘリカル歩行パターンにインスパイアされたGaitPatternを提案する。
- 参考スコア(独自算出の注目度): 59.46083527510924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whole-body-based human authentication is a promising approach for remote
biometrics scenarios. Current literature focuses on either body recognition
based on RGB images or gait recognition based on body shapes and walking
patterns; both have their advantages and drawbacks. In this work, we propose
Dual-Modal Ensemble (DME), which combines both RGB and silhouette data to
achieve more robust performances for indoor and outdoor whole-body based
recognition. Within DME, we propose GaitPattern, which is inspired by the
double helical gait pattern used in traditional gait analysis. The GaitPattern
contributes to robust identification performance over a large range of viewing
angles. Extensive experimental results on the CASIA-B dataset demonstrate that
the proposed method outperforms state-of-the-art recognition systems. We also
provide experimental results using the newly collected BRIAR dataset.
- Abstract(参考訳): 全身ベースのヒューマン認証は、遠隔生体認証シナリオに有望なアプローチである。
現在の文献では、RGB画像に基づく身体認識と、体型と歩行パターンに基づく歩行認識に焦点が当てられている。
本研究では,RGBデータとシルエットデータを組み合わせたDME(Dual-Modal Ensemble)を提案する。
DME内では、従来の歩行分析で用いられる二重ヘリカル歩行パターンにインスパイアされたGaitPatternを提案する。
GaitPatternは広い視野角での堅牢な識別性能に貢献している。
CASIA-Bデータセットの大規模な実験結果から,提案手法が最先端認識システムより優れていることが示された。
また,新たに収集したBRIARデータセットを用いて実験結果を提供する。
関連論文リスト
- Confidence-Aware RGB-D Face Recognition via Virtual Depth Synthesis [48.59382455101753]
2D顔認証は、照明、閉塞、ポーズの変化により、制約のない環境において課題に遭遇する。
近年の研究では、深度情報を組み込んだRGB-D顔認証に焦点が当てられている。
本研究では,まず,深度モデル事前学習のための3次元Morphable Modelsによって生成された多様な深度データセットを構築する。
そこで本研究では,手軽に利用できるRGBと深度モデルを利用したドメイン非依存の事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:12:24Z) - Distillation-guided Representation Learning for Unconstrained Gait Recognition [50.0533243584942]
本研究では,屋外シナリオにおける人間認証のためのGADER(GAit Detection and Recognition)フレームワークを提案する。
GADERは、歩行情報を含むフレームのみを使用する新しい歩行認識手法により識別的特徴を構築する。
室内および屋外のデータセットに一貫した改善を示すため,複数の歩行ベースライン(SoTA)について評価を行った。
論文 参考訳(メタデータ) (2023-07-27T01:53:57Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
歩行ベンチマークにより、研究コミュニティは高性能歩行認識システムの訓練と評価を行うことができる。
GREWは、野生における歩行認識のための最初の大規模データセットである。
SPOSGaitはNASベースの最初の歩行認識モデルである。
論文 参考訳(メタデータ) (2022-05-05T14:57:39Z) - Towards a Deeper Understanding of Skeleton-based Gait Recognition [4.812321790984493]
近年、ほとんどの歩行認識法は、人のシルエットを使って歩行の特徴を抽出している。
モデルに基づく手法はこれらの問題に悩まされず、身体関節の時間運動を表現することができる。
本研究では,高次入力と残差ネットワークを組み合わせたグラフ畳み込みネットワーク(GCN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-16T18:23:37Z) - Model-based gait recognition using graph network on very large
population database [3.8707695363745223]
本稿では,主題の増加とビューの変動に抵抗するため,局所的な特徴を構築し,シマウマネットワークを提案する。
OUM-Poseと呼ばれる非常に人口の多いデータセットと一般的なデータセットであるCASIA-Bの実験は、我々の手法がモデルに基づく歩行認識におけるSOTA(State-of-the-art)のパフォーマンスをアーカイブしていることを示している。
論文 参考訳(メタデータ) (2021-12-20T02:28:02Z) - View-Invariant Gait Recognition with Attentive Recurrent Learning of
Partial Representations [27.33579145744285]
本稿では,まず,フレームレベルの畳み込み特徴から歩行畳み込みエネルギーマップ(GCEM)を抽出するネットワークを提案する。
次に、GCEMの分割されたビンから学ぶために双方向ニューラルネットワークを採用し、学習された部分的リカレント表現の関係を利用する。
提案手法は2つの大規模CASIA-BとOU-Mの歩行データセットで広範囲に検証されている。
論文 参考訳(メタデータ) (2020-10-18T20:20:43Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z) - Creating Artificial Modalities to Solve RGB Liveness [79.9255035557979]
我々は,スプーフ検出のためのエンドツーエンドパイプラインと組み合わせて,ランクプーリングと光流の2種類の人工変換を導入する。
提案手法は, 最大のクロスセクニティ対面アンチスプーフィングデータセットCASIA-SURF CeFA (RGB) の最先端化を実現する。
論文 参考訳(メタデータ) (2020-06-29T13:19:22Z) - Skeleton Focused Human Activity Recognition in RGB Video [11.521107108725188]
骨格とRGBの両モードを併用したマルチモーダル特徴融合モデルを提案する。
モデルは、エンドツーエンドの方法で、バックプロパゲーションアルゴリズムによって個別または均一にトレーニングすることができる。
論文 参考訳(メタデータ) (2020-04-29T06:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。