論文の概要: Deep Clustering: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2210.04142v1
- Date: Sun, 9 Oct 2022 02:31:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 18:31:13.917907
- Title: Deep Clustering: A Comprehensive Survey
- Title(参考訳): Deep Clustering: 総合的な調査
- Authors: Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu,
Philip S. Yu, Lifang He
- Abstract要約: クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
- 参考スコア(独自算出の注目度): 53.387957674512585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cluster analysis plays an indispensable role in machine learning and data
mining. Learning a good data representation is crucial for clustering
algorithms. Recently, deep clustering, which can learn clustering-friendly
representations using deep neural networks, has been broadly applied in a wide
range of clustering tasks. Existing surveys for deep clustering mainly focus on
the single-view fields and the network architectures, ignoring the complex
application scenarios of clustering. To address this issue, in this paper we
provide a comprehensive survey for deep clustering in views of data sources.
With different data sources and initial conditions, we systematically
distinguish the clustering methods in terms of methodology, prior knowledge,
and architecture. Concretely, deep clustering methods are introduced according
to four categories, i.e., traditional single-view deep clustering,
semi-supervised deep clustering, deep multi-view clustering, and deep transfer
clustering. Finally, we discuss the open challenges and potential future
opportunities in different fields of deep clustering.
- Abstract(参考訳): クラスタ分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
優れたデータ表現を学ぶことは、クラスタリングアルゴリズムにとって重要です。
近年,ディープニューラルネットワークを用いてクラスタリングフレンドリな表現を学習できるディープクラスタリングが,幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
この問題に対処するため,本稿では,データソースの視点における深いクラスタリングに関する総合的な調査を行う。
異なるデータソースと初期条件を用いて,クラスタリング手法を方法論,事前知識,アーキテクチャの観点から体系的に区別する。
具体的には、従来のシングルビューディープクラスタリング、半教師付きディープクラスタリング、ディープマルチビュークラスタリング、ディープ転送クラスタリングの4つのカテゴリに従って、ディープクラスタリングを導入する。
最後に、深層クラスタリングの様々な分野におけるオープンな課題と将来の可能性について論じる。
関連論文リスト
- Dying Clusters Is All You Need -- Deep Clustering With an Unknown Number of Clusters [5.507296054825372]
高次元データで有意義なグループを見つけることは、データマイニングにおいて重要な課題である。
深層クラスタリング手法はこれらの課題において顕著な成果を上げている。
これらのメソッドの多くは、事前にクラスタの数を指定する必要がある。
これは、ラベル付きデータが利用できない場合、クラスタの数は通常不明であるため、大きな制限となる。
これらのアプローチのほとんどは、クラスタリングプロセスから分離されたクラスタの数を見積もっています。
論文 参考訳(メタデータ) (2024-10-12T11:04:10Z) - A Survey on Deep Clustering: From the Prior Perspective [9.628838389364864]
この調査は、6種類の事前知識に分類することで、ディープクラスタリング手法の包括的なレビューを提供する。
広範に使われている5つのデータセットのベンチマークを提供し、様々な先行する手法のパフォーマンスを分析する。
論文 参考訳(メタデータ) (2024-06-28T02:18:16Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - DivClust: Controlling Diversity in Deep Clustering [47.85350249697335]
DivClustはコンセンサスクラスタリングソリューションを生成し、単一クラスタリングベースラインを一貫して上回る。
提案手法は, フレームワークやデータセット間の多様性を, 計算コストを極めて小さく効果的に制御する。
論文 参考訳(メタデータ) (2023-04-03T14:45:43Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
クラスタリングは、文献で広く研究されている基本的な機械学習タスクである。
ディープクラスタリング(Deep Clustering)、すなわち表現学習とクラスタリングを共同で最適化する手法が提案され、コミュニティで注目を集めている。
深層クラスタリングの本質的なコンポーネントを要約し、深層クラスタリングと深層クラスタリングの相互作用を設計する方法によって既存の手法を分類する。
論文 参考訳(メタデータ) (2022-06-15T15:05:13Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。