Let Images Give You More:Point Cloud Cross-Modal Training for Shape
Analysis
- URL: http://arxiv.org/abs/2210.04208v1
- Date: Sun, 9 Oct 2022 09:35:22 GMT
- Title: Let Images Give You More:Point Cloud Cross-Modal Training for Shape
Analysis
- Authors: Xu Yan, Heshen Zhan, Chaoda Zheng, Jiantao Gao, Ruimao Zhang, Shuguang
Cui, Zhen Li
- Abstract summary: This paper introduces a simple but effective point cloud cross-modality training (PointCMT) strategy to boost point cloud analysis.
To effectively acquire auxiliary knowledge from view images, we develop a teacher-student framework and formulate the cross modal learning as a knowledge distillation problem.
We verify significant gains on various datasets using appealing backbones, i.e., equipped with PointCMT, PointNet++ and PointMLP.
- Score: 43.13887916301742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although recent point cloud analysis achieves impressive progress, the
paradigm of representation learning from a single modality gradually meets its
bottleneck. In this work, we take a step towards more discriminative 3D point
cloud representation by fully taking advantages of images which inherently
contain richer appearance information, e.g., texture, color, and shade.
Specifically, this paper introduces a simple but effective point cloud
cross-modality training (PointCMT) strategy, which utilizes view-images, i.e.,
rendered or projected 2D images of the 3D object, to boost point cloud
analysis. In practice, to effectively acquire auxiliary knowledge from view
images, we develop a teacher-student framework and formulate the cross modal
learning as a knowledge distillation problem. PointCMT eliminates the
distribution discrepancy between different modalities through novel feature and
classifier enhancement criteria and avoids potential negative transfer
effectively. Note that PointCMT effectively improves the point-only
representation without architecture modification. Sufficient experiments verify
significant gains on various datasets using appealing backbones, i.e., equipped
with PointCMT, PointNet++ and PointMLP achieve state-of-the-art performance on
two benchmarks, i.e., 94.4% and 86.7% accuracy on ModelNet40 and ScanObjectNN,
respectively. Code will be made available at
https://github.com/ZhanHeshen/PointCMT.
Related papers
- Pic@Point: Cross-Modal Learning by Local and Global Point-Picture Correspondence [0.0]
We present Pic@Point, an effective contrastive learning method based on structural 2D-3D correspondences.
We leverage image cues rich in semantic and contextual knowledge to provide a guiding signal for point cloud representations.
arXiv Detail & Related papers (2024-10-12T12:43:41Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
We present a hybrid-view-based knowledge distillation framework, termed HVDistill, to guide the feature learning of a point cloud neural network.
Our method achieves consistent improvements over the baseline trained from scratch and significantly out- performs the existing schemes.
arXiv Detail & Related papers (2024-03-18T14:18:08Z) - Cross-Modal Information-Guided Network using Contrastive Learning for
Point Cloud Registration [17.420425069785946]
We present a novel Cross-Modal Information-Guided Network (CMIGNet) for point cloud registration.
We first incorporate the projected images from the point clouds and fuse the cross-modal features using the attention mechanism.
We employ two contrastive learning strategies, namely overlapping contrastive learning and cross-modal contrastive learning.
arXiv Detail & Related papers (2023-11-02T12:56:47Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Intrinsic Image Decomposition Using Point Cloud Representation [13.771632868567277]
We introduce Point Intrinsic Net (PoInt-Net), which leverages 3D point cloud data to concurrently estimate albedo and shading maps.
PoInt-Net is efficient, achieving consistent performance across point clouds of any size with training only required on small-scale point clouds.
arXiv Detail & Related papers (2023-07-20T14:51:28Z) - CLR-GAM: Contrastive Point Cloud Learning with Guided Augmentation and
Feature Mapping [12.679625717350113]
We present CLR-GAM, a contrastive learning-based framework with Guided Augmentation (GA) for efficient dynamic exploration strategy.
We empirically demonstrate that the proposed approach achieves state-of-the-art performance on both simulated and real-world 3D point cloud datasets.
arXiv Detail & Related papers (2023-02-28T04:38:52Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural encoders.
The learned point-cloud can be easily integrated into various downstream tasks, including not only high-level rendering tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image rendering.
arXiv Detail & Related papers (2022-12-31T08:58:39Z) - P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with
Point-to-Pixel Prompting [94.11915008006483]
We propose a novel Point-to-Pixel prompting for point cloud analysis.
Our method attains 89.3% accuracy on the hardest setting of ScanObjectNN.
Our framework also exhibits very competitive performance on ModelNet classification and ShapeNet Part Code.
arXiv Detail & Related papers (2022-08-04T17:59:03Z) - CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D
Point Cloud Understanding [2.8661021832561757]
CrossPoint is a simple cross-modal contrastive learning approach to learn transferable 3D point cloud representations.
Our approach outperforms the previous unsupervised learning methods on a diverse range of downstream tasks including 3D object classification and segmentation.
arXiv Detail & Related papers (2022-03-01T18:59:01Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.