論文の概要: Improved Abdominal Multi-Organ Segmentation via 3D Boundary-Constrained
Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2210.04285v1
- Date: Sun, 9 Oct 2022 15:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 16:07:59.465569
- Title: Improved Abdominal Multi-Organ Segmentation via 3D Boundary-Constrained
Deep Neural Networks
- Title(参考訳): 3次元境界拘束型ディープニューラルネットワークによる腹部多臓器分割の改善
- Authors: Samra Irshad, Douglas P.S. Gomes and Seong Tae Kim
- Abstract要約: 我々は3Dエンコーダ・デコーダネットワークを訓練し,腹部臓器とそれに対応する境界をCTスキャンで同時に分割する。
腹腔内多臓器分節の改善における相補的境界予測タスクの有用性について検討した。
- 参考スコア(独自算出の注目度): 9.416108287575915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantitative assessment of the abdominal region from clinically acquired CT
scans requires the simultaneous segmentation of abdominal organs. Thanks to the
availability of high-performance computational resources, deep learning-based
methods have resulted in state-of-the-art performance for the segmentation of
3D abdominal CT scans. However, the complex characterization of organs with
fuzzy boundaries prevents the deep learning methods from accurately segmenting
these anatomical organs. Specifically, the voxels on the boundary of organs are
more vulnerable to misprediction due to the highly-varying intensity of
inter-organ boundaries. This paper investigates the possibility of improving
the abdominal image segmentation performance of the existing 3D encoder-decoder
networks by leveraging organ-boundary prediction as a complementary task. To
address the problem of abdominal multi-organ segmentation, we train the 3D
encoder-decoder network to simultaneously segment the abdominal organs and
their corresponding boundaries in CT scans via multi-task learning. The network
is trained end-to-end using a loss function that combines two task-specific
losses, i.e., complete organ segmentation loss and boundary prediction loss. We
explore two different network topologies based on the extent of weights shared
between the two tasks within a unified multi-task framework. To evaluate the
utilization of complementary boundary prediction task in improving the
abdominal multi-organ segmentation, we use three state-of-the-art
encoder-decoder networks: 3D UNet, 3D UNet++, and 3D Attention-UNet. The
effectiveness of utilizing the organs' boundary information for abdominal
multi-organ segmentation is evaluated on two publically available abdominal CT
datasets. A maximum relative improvement of 3.5% and 3.6% is observed in Mean
Dice Score for Pancreas-CT and BTCV datasets, respectively.
- Abstract(参考訳): 腹部ct検査による腹部領域の定量的評価には腹部臓器の同時分割が必要である。
高性能な計算資源が利用可能であったため,深層学習による3次元腹部CTスキャンのセグメント化の最先端性能が得られた。
しかし、ファジィ境界を持つ臓器の複雑な特性は、深層学習法がこれらの解剖学的器官を正確に分類することを妨げている。
特に、臓器の境界のボクセルは、組織間の境界の強度が高度に変化するため、誤った予測に対してより脆弱である。
本稿では,臓器境界予測を補完課題として活用することにより,既存の3次元エンコーダデコーダネットワークの腹部画像分割性能を向上させる可能性を検討する。
腹部マルチオルガンセグメンテーションの問題に対処するため,3次元エンコーダ・デコーダネットワークを訓練し,マルチタスク学習により腹部臓器とそれに対応する境界を同時に分割する。
ネットワークは2つのタスク固有の損失、すなわち完全な臓器分割損失と境界予測損失を組み合わせた損失関数を用いてエンドツーエンドに訓練される。
統合マルチタスクフレームワーク内の2つのタスク間で共有される重み度に基づいて、2つの異なるネットワークトポロジを探索する。
3D UNet, 3D UNet++, 3D Attention-UNetの3つの最先端エンコーダデコーダネットワークを用いて, 腹腔内多臓器セグメンテーションの改善における相補的境界予測タスクの利用性を評価する。
腹部多臓器郭清における臓器境界情報の有用性を,2つの腹部CTデータセットを用いて評価した。
pancreas-ct と btcv のデータセットでは,平均 dice スコアで最大 3.5% と 3.6% の相対的改善が見られた。
関連論文リスト
- Scribble-based 3D Multiple Abdominal Organ Segmentation via
Triple-branch Multi-dilated Network with Pixel- and Class-wise Consistency [20.371144313009122]
そこで本研究では,CTからスクリブル制御された多発性腹部臓器分節に対する2つの整合性制約を有する新しい3Dフレームワークを提案する。
より安定した教師なし学習のために、voxel-wiseの不確実性を用いて、ソフトな擬似ラベルを修正し、各デコーダの出力を監督する。
公開WORDデータセットの実験により,本手法は既存の5つのスクリブル教師付き手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-18T12:50:58Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - Boundary-Aware Network for Abdominal Multi-Organ Segmentation [21.079667938055668]
腹部臓器をCTとMRIに分割する境界認識ネットワーク(BA-Net)を提案する。
その結果,両セグメンテーションタスクにおいて,BA-NetはnnUNetよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-08-29T02:24:02Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Recurrent Feature Propagation and Edge Skip-Connections for Automatic
Abdominal Organ Segmentation [13.544665065396373]
本稿では,エンコーダ,エッジ検出器,エッジスキップ接続付きデコーダ,繰り返し特徴伝搬ヘッドを含む,エンドツーエンドの4つの主要コンポーネントを訓練した3Dネットワークを提案する。
実験の結果,提案したネットワークはいくつかの最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-01-02T08:33:19Z) - Deep Reinforcement Learning for Organ Localization in CT [59.23083161858951]
我々はCTにおける臓器局所化のための深層強化学習手法を提案する。
この研究において、人工エージェントは、その主張や誤りから学習することで、CT内の臓器の局所化を積極的に行う。
本手法は,任意の臓器をローカライズするためのプラグイン・アンド・プレイモジュールとして利用できる。
論文 参考訳(メタデータ) (2020-05-11T10:06:13Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z) - Abdominal multi-organ segmentation with cascaded convolutional and
adversarial deep networks [0.36944296923226316]
深層学習を用いた腹部CTおよびMR画像からの完全自動多臓器分画について検討した。
我々のパイプラインは、最先端のエンコーダデコーダスキームよりも優れた結果をもたらす。
論文 参考訳(メタデータ) (2020-01-26T21:28:04Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。