Unsupervised Domain Adaptive Fundus Image Segmentation with Few Labeled
Source Data
- URL: http://arxiv.org/abs/2210.04379v1
- Date: Mon, 10 Oct 2022 00:30:48 GMT
- Title: Unsupervised Domain Adaptive Fundus Image Segmentation with Few Labeled
Source Data
- Authors: Qianbi Yu, Dongnan Liu, Chaoyi Zhang, Xinwen Zhang, Weidong Cai
- Abstract summary: unsupervised domain adaptation (UDA) methods enhance the models' generalization ability on the unlabeled target fundus datasets.
UDA methods always require sufficient labeled data from the source domain, bringing auxiliary data acquisition and annotation costs.
We propose a Searching-based Multi-style Invariant Mechanism to diversify the source data style and increase the data amount.
Our method has outperformed several state-of-the-art UDA segmentation methods under the UDA fundus segmentation with few labeled source data.
- Score: 17.106866501665916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning-based segmentation methods have been widely employed for
automatic glaucoma diagnosis and prognosis. In practice, fundus images obtained
by different fundus cameras vary significantly in terms of illumination and
intensity. Although recent unsupervised domain adaptation (UDA) methods enhance
the models' generalization ability on the unlabeled target fundus datasets,
they always require sufficient labeled data from the source domain, bringing
auxiliary data acquisition and annotation costs. To further facilitate the data
efficiency of the cross-domain segmentation methods on the fundus images, we
explore UDA optic disc and cup segmentation problems using few labeled source
data in this work. We first design a Searching-based Multi-style Invariant
Mechanism to diversify the source data style as well as increase the data
amount. Next, a prototype consistency mechanism on the foreground objects is
proposed to facilitate the feature alignment for each kind of tissue under
different image styles. Moreover, a cross-style self-supervised learning stage
is further designed to improve the segmentation performance on the target
images. Our method has outperformed several state-of-the-art UDA segmentation
methods under the UDA fundus segmentation with few labeled source data.
Related papers
- Diffuse-UDA: Addressing Unsupervised Domain Adaptation in Medical Image Segmentation with Appearance and Structure Aligned Diffusion Models [31.006056670998852]
The scarcity and complexity of voxel-level annotations in 3D medical imaging present significant challenges.
This disparity affects the fairness of artificial intelligence algorithms in healthcare.
We introduce Diffuse-UDA, a novel method leveraging diffusion models to tackle Unsupervised Domain Adaptation (UDA) in medical image segmentation.
arXiv Detail & Related papers (2024-08-12T08:21:04Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
Adapting a deep learning model to a specific target individual is a challenging facial expression recognition task.
This paper introduces a new MSDA method for subject-based domain adaptation in FER.
It efficiently leverages information from multiple source subjects to adapt a deep FER model to a single target individual.
arXiv Detail & Related papers (2023-12-09T18:40:37Z) - Robust Source-Free Domain Adaptation for Fundus Image Segmentation [3.585032903685044]
Unlabelled Domain Adaptation (UDA) is a learning technique that transfers knowledge learned in the source domain from labelled data to the target domain with only unlabelled data.
In this study, we propose a two-stage training stage for robust domain adaptation.
We propose a novel robust pseudo-label and pseudo-boundary (PLPB) method, which effectively utilizes unlabeled target data to generate pseudo labels and pseudo boundaries.
arXiv Detail & Related papers (2023-10-25T14:25:18Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
We propose a novel Multi-scale Multi-target Domain Adversarial Network (M2DAN) for angle closure classification.
Based on these domain-invariant features at different scales, the deep model trained on the source domain is able to classify angle closure on multiple target domains.
arXiv Detail & Related papers (2022-08-25T15:27:55Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
We propose a data manipulation based domain generalization method, called Automated Augmentation for Domain Generalization (AADG)
Our AADG framework can effectively sample data augmentation policies that generate novel domains.
Our proposed AADG exhibits state-of-the-art generalization performance and outperforms existing approaches.
arXiv Detail & Related papers (2022-07-27T02:26:01Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.