A Survey on Heterogeneous Federated Learning
- URL: http://arxiv.org/abs/2210.04505v1
- Date: Mon, 10 Oct 2022 09:16:43 GMT
- Title: A Survey on Heterogeneous Federated Learning
- Authors: Dashan Gao, Xin Yao, Qiang Yang
- Abstract summary: Federated learning (FL) has been proposed to protect data privacy and assemble isolated data silos by cooperatively training models among organizations without breaching privacy and security.
However, FL faces heterogeneous aspects, including data space, statistical, and system heterogeneity.
We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective.
- Score: 12.395474890081232
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated learning (FL) has been proposed to protect data privacy and
virtually assemble the isolated data silos by cooperatively training models
among organizations without breaching privacy and security. However, FL faces
heterogeneity from various aspects, including data space, statistical, and
system heterogeneity. For example, collaborative organizations without conflict
of interest often come from different areas and have heterogeneous data from
different feature spaces. Participants may also want to train heterogeneous
personalized local models due to non-IID and imbalanced data distribution and
various resource-constrained devices. Therefore, heterogeneous FL is proposed
to address the problem of heterogeneity in FL. In this survey, we
comprehensively investigate the domain of heterogeneous FL in terms of data
space, statistical, system, and model heterogeneity. We first give an overview
of FL, including its definition and categorization. Then, We propose a precise
taxonomy of heterogeneous FL settings for each type of heterogeneity according
to the problem setting and learning objective. We also investigate the transfer
learning methodologies to tackle the heterogeneity in FL. We further present
the applications of heterogeneous FL. Finally, we highlight the challenges and
opportunities and envision promising future research directions toward new
framework design and trustworthy approaches.
Related papers
- A Unified Solution to Diverse Heterogeneities in One-shot Federated Learning [14.466679488063217]
One-shot federated learning (FL) limits the communication between the server and clients to a single round.
We propose a unified, data-free, one-shot FL framework (FedHydra) that can effectively address both model and data heterogeneity.
arXiv Detail & Related papers (2024-10-28T15:20:52Z) - Comparative Evaluation of Clustered Federated Learning Methods [0.5242869847419834]
Clustered Federated Learning (CFL) aims to partition clients into groups where the distribution are homogeneous.
In this paper, we explore the performance of two state-of-theart CFL algorithms with respect to a proposed taxonomy of data heterogeneities in federated learning (FL)
Our objective is to provide a clearer understanding of the relationship between CFL performances and data heterogeneous scenarios.
arXiv Detail & Related papers (2024-10-18T07:01:56Z) - Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment [1.2499537119440245]
Federated learning (FL) has emerged as a promising approach to training machine learning models across decentralized data sources.
This paper provides a comprehensive overview of data heterogeneity in FL within the context of manufacturing.
We discuss the impact of these types of heterogeneity on model training and review current methodologies for mitigating their adverse effects.
arXiv Detail & Related papers (2024-08-18T17:49:44Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
This paper presents a novel FCCL+, federated correlation and similarity learning with non-target distillation.
For heterogeneous issue, we leverage irrelevant unlabeled public data for communication.
For catastrophic forgetting in local updating stage, FCCL+ introduces Federated Non Target Distillation.
arXiv Detail & Related papers (2023-09-28T09:32:27Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Federated Learning for Data and Model Heterogeneity in Medical Imaging [19.0931609571649]
Federated Learning (FL) is an evolving machine learning method in which multiple clients participate in collaborative learning without sharing their data with each other and the central server.
In real-world applications such as hospitals and industries, FL counters the challenges of data Heterogeneity and Model Heterogeneity.
We propose a method, MDH-FL (Exploiting Model and Data Heterogeneity in FL), to solve such problems.
arXiv Detail & Related papers (2023-07-31T21:08:45Z) - Heterogeneous Federated Learning: State-of-the-art and Research
Challenges [117.77132819796105]
Heterogeneous Federated Learning (HFL) is much more challenging and corresponding solutions are diverse and complex.
New advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed.
Several critical and promising future research directions in HFL are discussed.
arXiv Detail & Related papers (2023-07-20T06:32:14Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
Federated learning (FL) enables distributed participants to collectively learn a strong global model without sacrificing their individual data privacy.
We introduce FedH2L, which is agnostic to both the model architecture and robust to different data distributions across participants.
In contrast to approaches sharing parameters or gradients, FedH2L relies on mutual distillation, exchanging only posteriors on a shared seed set between participants in a decentralized manner.
arXiv Detail & Related papers (2021-01-27T10:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.