Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment
- URL: http://arxiv.org/abs/2408.09556v1
- Date: Sun, 18 Aug 2024 17:49:44 GMT
- Title: Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment
- Authors: Tatjana Legler, Vinit Hegiste, Ahmed Anwar, Martin Ruskowski,
- Abstract summary: Federated learning (FL) has emerged as a promising approach to training machine learning models across decentralized data sources.
This paper provides a comprehensive overview of data heterogeneity in FL within the context of manufacturing.
We discuss the impact of these types of heterogeneity on model training and review current methodologies for mitigating their adverse effects.
- Score: 1.2499537119440245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning (FL) has emerged as a promising approach to training machine learning models across decentralized data sources while preserving data privacy, particularly in manufacturing and shared production environments. However, the presence of data heterogeneity variations in data distribution, quality, and volume across different or clients and production sites, poses significant challenges to the effectiveness and efficiency of FL. This paper provides a comprehensive overview of heterogeneity in FL within the context of manufacturing, detailing the types and sources of heterogeneity, including non-independent and identically distributed (non-IID) data, unbalanced data, variable data quality, and statistical heterogeneity. We discuss the impact of these types of heterogeneity on model training and review current methodologies for mitigating their adverse effects. These methodologies include personalized and customized models, robust aggregation techniques, and client selection techniques. By synthesizing existing research and proposing new strategies, this paper aims to provide insight for effectively managing data heterogeneity in FL, enhancing model robustness, and ensuring fair and efficient training across diverse environments. Future research directions are also identified, highlighting the need for adaptive and scalable solutions to further improve the FL paradigm in the context of Industry 4.0.
Related papers
- DynamicFL: Federated Learning with Dynamic Communication Resource Allocation [34.97472382870816]
Federated Learning (FL) is a collaborative machine learning framework that allows multiple users to train models utilizing their local data in a distributed manner.
We introduce DynamicFL, a new FL framework that investigates the trade-offs between global model performance and communication costs.
We show that DynamicFL surpasses current state-of-the-art methods with up to a 10% increase in model accuracy.
arXiv Detail & Related papers (2024-09-08T05:53:32Z) - Synthetic Data Aided Federated Learning Using Foundation Models [4.666380225768727]
We propose Differentially Private Synthetic Data Aided Federated Learning Using Foundation Models (DPSDA-FL)
Our experimental results have shown that DPSDA-FL can improve class recall and classification accuracy of the global model by up to 26% and 9%, respectively, in FL with Non-IID issues.
arXiv Detail & Related papers (2024-07-06T20:31:43Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - A review on different techniques used to combat the non-IID and
heterogeneous nature of data in FL [0.0]
Federated Learning (FL) is a machine-learning approach enabling collaborative model training across multiple edge devices.
The significance of FL is particularly pronounced in industries such as healthcare and finance, where data privacy holds paramount importance.
This report delves into the issues arising from non-IID and heterogeneous data and explores current algorithms designed to address these challenges.
arXiv Detail & Related papers (2024-01-01T16:34:00Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - Federated Learning for Data and Model Heterogeneity in Medical Imaging [19.0931609571649]
Federated Learning (FL) is an evolving machine learning method in which multiple clients participate in collaborative learning without sharing their data with each other and the central server.
In real-world applications such as hospitals and industries, FL counters the challenges of data Heterogeneity and Model Heterogeneity.
We propose a method, MDH-FL (Exploiting Model and Data Heterogeneity in FL), to solve such problems.
arXiv Detail & Related papers (2023-07-31T21:08:45Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.