Self-Supervised 3D Human Pose Estimation in Static Video Via Neural
Rendering
- URL: http://arxiv.org/abs/2210.04514v1
- Date: Mon, 10 Oct 2022 09:24:07 GMT
- Title: Self-Supervised 3D Human Pose Estimation in Static Video Via Neural
Rendering
- Authors: Luca Schmidtke, Benjamin Hou, Athanasios Vlontzos, Bernhard Kainz
- Abstract summary: Inferring 3D human pose from 2D images is a challenging and long-standing problem in the field of computer vision.
We present preliminary results for a method to estimate 3D pose from 2D video containing a single person.
- Score: 5.568218439349004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring 3D human pose from 2D images is a challenging and long-standing
problem in the field of computer vision with many applications including motion
capture, virtual reality, surveillance or gait analysis for sports and
medicine. We present preliminary results for a method to estimate 3D pose from
2D video containing a single person and a static background without the need
for any manual landmark annotations. We achieve this by formulating a simple
yet effective self-supervision task: our model is required to reconstruct a
random frame of a video given a frame from another timepoint and a rendered
image of a transformed human shape template. Crucially for optimisation, our
ray casting based rendering pipeline is fully differentiable, enabling end to
end training solely based on the reconstruction task.
Related papers
- Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - Farm3D: Learning Articulated 3D Animals by Distilling 2D Diffusion [67.71624118802411]
We present Farm3D, a method for learning category-specific 3D reconstructors for articulated objects.
We propose a framework that uses an image generator, such as Stable Diffusion, to generate synthetic training data.
Our network can be used for analysis, including monocular reconstruction, or for synthesis, generating articulated assets for real-time applications such as video games.
arXiv Detail & Related papers (2023-04-20T17:59:34Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
We consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera.
We leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks.
In particular, we estimate the scene depth and unique person scale from normalized disparity predictions using the 2D body joints and joint angles.
arXiv Detail & Related papers (2023-01-12T18:01:28Z) - Structured 3D Features for Reconstructing Controllable Avatars [43.36074729431982]
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface.
We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation.
arXiv Detail & Related papers (2022-12-13T18:57:33Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
We present a method to map 2D image observations of a scene to a persistent 3D scene representation.
We propose conditional neural groundplans as persistent and memory-efficient scene representations.
arXiv Detail & Related papers (2022-07-22T17:41:24Z) - Human Performance Capture from Monocular Video in the Wild [50.34917313325813]
We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses.
Our method outperforms state-of-the-art methods on an in-the-wild human video dataset 3DPW.
arXiv Detail & Related papers (2021-11-29T16:32:41Z) - Action2video: Generating Videos of Human 3D Actions [31.665831044217363]
We aim to tackle the interesting yet challenging problem of generating videos of diverse and natural human motions from prescribed action categories.
Key issue lies in the ability to synthesize multiple distinct motion sequences that are realistic in their visual appearances.
Action2motionally generates plausible 3D pose sequences of a prescribed action category, which are processed and rendered by motion2video to form 2D videos.
arXiv Detail & Related papers (2021-11-12T20:20:37Z) - Vid2Actor: Free-viewpoint Animatable Person Synthesis from Video in the
Wild [22.881898195409885]
Given an "in-the-wild" video of a person, we reconstruct an animatable model of the person in the video.
The output model can be rendered in any body pose to any camera view, via the learned controls, without explicit 3D mesh reconstruction.
arXiv Detail & Related papers (2020-12-23T18:50:42Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Chained Representation Cycling: Learning to Estimate 3D Human Pose and
Shape by Cycling Between Representations [73.11883464562895]
We propose a new architecture that facilitates unsupervised, or lightly supervised, learning.
We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images.
While we present results for modeling humans, our formulation is general and can be applied to other vision problems.
arXiv Detail & Related papers (2020-01-06T14:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.