Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos
- URL: http://arxiv.org/abs/2407.04384v1
- Date: Fri, 5 Jul 2024 09:43:05 GMT
- Title: Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos
- Authors: Leonhard Sommer, Artur Jesslen, Eddy Ilg, Adam Kortylewski,
- Abstract summary: Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
- Score: 15.532504015622159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics, e.g. for embodied agents or to train 3D generative models. However, so far methods that estimate the category-level object pose require either large amounts of human annotations, CAD models or input from RGB-D sensors. In contrast, we tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos without human supervision. We propose a two-step pipeline: First, we introduce a multi-view alignment procedure that determines canonical camera poses across videos with a novel and robust cyclic distance formulation for geometric and appearance matching using reconstructed coarse meshes and DINOv2 features. In a second step, the canonical poses and reconstructed meshes enable us to train a model for 3D pose estimation from a single image. In particular, our model learns to estimate dense correspondences between images and a prototypical 3D template by predicting, for each pixel in a 2D image, a feature vector of the corresponding vertex in the template mesh. We demonstrate that our method outperforms all baselines at the unsupervised alignment of object-centric videos by a large margin and provides faithful and robust predictions in-the-wild. Our code and data is available at https://github.com/GenIntel/uns-obj-pose3d.
Related papers
- Generating 3D-Consistent Videos from Unposed Internet Photos [68.944029293283]
We train a scalable, 3D-aware video model without any 3D annotations such as camera parameters.
Our results suggest that we can scale up scene-level 3D learning using only 2D data such as videos and multiview internet photos.
arXiv Detail & Related papers (2024-11-20T18:58:31Z) - SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views [36.02533658048349]
We propose a novel method, SpaRP, to reconstruct a 3D textured mesh and estimate the relative camera poses for sparse-view images.
SpaRP distills knowledge from 2D diffusion models and finetunes them to implicitly deduce the 3D spatial relationships between the sparse views.
It requires only about 20 seconds to produce a textured mesh and camera poses for the input views.
arXiv Detail & Related papers (2024-08-19T17:53:10Z) - Self-learning Canonical Space for Multi-view 3D Human Pose Estimation [57.969696744428475]
Multi-view 3D human pose estimation is naturally superior to single view one.
The accurate annotation of these information is hard to obtain.
We propose a fully self-supervised framework, named cascaded multi-view aggregating network (CMANet)
CMANet is superior to state-of-the-art methods in extensive quantitative and qualitative analysis.
arXiv Detail & Related papers (2024-03-19T04:54:59Z) - End-to-End Learning of Multi-category 3D Pose and Shape Estimation [128.881857704338]
We propose an end-to-end method that simultaneously detects 2D keypoints from an image and lifts them to 3D.
The proposed method learns both 2D detection and 3D lifting only from 2D keypoints annotations.
In addition to being end-to-end in image to 3D learning, our method also handles objects from multiple categories using a single neural network.
arXiv Detail & Related papers (2021-12-19T17:10:40Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z) - Self-Supervised 3D Human Pose Estimation with Multiple-View Geometry [2.7541825072548805]
We present a self-supervised learning algorithm for 3D human pose estimation of a single person based on a multiple-view camera system.
We propose a four-loss function learning algorithm, which does not require any 2D or 3D body pose ground-truth.
arXiv Detail & Related papers (2021-08-17T17:31:24Z) - TriPose: A Weakly-Supervised 3D Human Pose Estimation via Triangulation
from Video [23.00696619207748]
Estimating 3D human poses from video is a challenging problem.
The lack of 3D human pose annotations is a major obstacle for supervised training and for generalization to unseen datasets.
We propose a weakly-supervised training scheme that does not require 3D annotations or calibrated cameras.
arXiv Detail & Related papers (2021-05-14T00:46:48Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.