論文の概要: A policy gradient approach for Finite Horizon Constrained Markov Decision Processes
- arxiv url: http://arxiv.org/abs/2210.04527v4
- Date: Mon, 14 Oct 2024 13:18:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:01:48.017991
- Title: A policy gradient approach for Finite Horizon Constrained Markov Decision Processes
- Title(参考訳): 有限水平制約マルコフ決定過程に対する政策勾配法
- Authors: Soumyajit Guin, Shalabh Bhatnagar,
- Abstract要約: 固定時間(有限時間)後に地平線が終了する有限水平設定における制約付きRLのアルゴリズムを提案する。
我々の知る限り、制約付き有限地平線設定のための最初のポリシー勾配アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 6.682382456607199
- License:
- Abstract: The infinite horizon setting is widely adopted for problems of reinforcement learning (RL). These invariably result in stationary policies that are optimal. In many situations, finite horizon control problems are of interest and for such problems, the optimal policies are time-varying in general. Another setting that has become popular in recent times is of Constrained Reinforcement Learning, where the agent maximizes its rewards while it also aims to satisfy some given constraint criteria. However, this setting has only been studied in the context of infinite horizon MDPs where stationary policies are optimal. We present an algorithm for constrained RL in the Finite Horizon Setting where the horizon terminates after a fixed (finite) time. We use function approximation in our algorithm which is essential when the state and action spaces are large or continuous and use the policy gradient method to find the optimal policy. The optimal policy that we obtain depends on the stage and so is non-stationary in general. To the best of our knowledge, our paper presents the first policy gradient algorithm for the finite horizon setting with constraints. We show the convergence of our algorithm to a constrained optimal policy. We also compare and analyze the performance of our algorithm through experiments and show that our algorithm performs better than some other well known algorithms.
- Abstract(参考訳): 有限地平線設定は強化学習(RL)問題に広く採用されている。
これらは常に最適な定常的な政策をもたらす。
多くの状況において、有限地平線制御問題は興味を持ち、そのような問題に対して、最適ポリシーは一般に時変である。
近年では、エージェントが報酬を最大化し、与えられた制約基準を満たすことを目指す制約強化学習(Constrained Reinforcement Learning)も人気になっている。
しかし、この設定は定常ポリシーが最適である無限地平線 MDP の文脈でのみ研究されている。
固定時間(有限時間)後に地平線が終了する有限水平設定における制約付きRLのアルゴリズムを提案する。
状態空間と行動空間が大規模あるいは連続である場合に必要となる関数近似を使い、最適ポリシーを見つけるためにポリシー勾配法を用いる。
私たちが得られる最適なポリシーは、ステージによって異なり、一般には非定常である。
我々の知る限り、制約付き有限地平線設定のための最初のポリシー勾配アルゴリズムを提案する。
制約付き最適ポリシーへのアルゴリズムの収束を示す。
また、実験を通してアルゴリズムの性能を比較し、分析し、我々のアルゴリズムが他のよく知られたアルゴリズムよりも優れていることを示す。
関連論文リスト
- A Provably Efficient Option-Based Algorithm for both High-Level and Low-Level Learning [54.20447310988282]
異なる(高低と高低の)時間的抽象化において,後悔最小化アルゴリズムのメタアルゴリズムを交互に提案する。
高いレベルでは、半マルコフ決定プロセス(SMDP)として、固定された低レベルポリシーで、低いレベルでは内部オプションポリシーを固定された高レベルポリシーで学習する。
論文 参考訳(メタデータ) (2024-06-21T13:17:33Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - A Policy Gradient Method for Confounded POMDPs [7.75007282943125]
オフライン環境下での連続状態と観測空間を持つ部分観測可能マルコフ決定過程(POMDP)の整合化のためのポリシー勾配法を提案する。
まず、オフラインデータを用いて、POMDPの履歴依存ポリシー勾配を非パラメトリックに推定するために、新しい識別結果を確立する。
論文 参考訳(メタデータ) (2023-05-26T16:48:05Z) - Constrained Reinforcement Learning via Dissipative Saddle Flow Dynamics [5.270497591225775]
制約強化学習(C-RL)において、エージェントは期待される累積報酬を最大化するポリシーを環境から学ぼうとする。
サンプルベース原始双対法に根ざしたいくつかのアルゴリズムが、政策空間においてこの問題を解決するために最近提案されている。
本稿では,制約付きRLに対して,これらの制約に悩まされない新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-03T01:54:55Z) - Policy Optimization for Stochastic Shortest Path [43.2288319750466]
最短経路(SSP)問題に対する政策最適化について検討する。
本研究では,有限ホライゾンモデルを厳密に一般化した目標指向強化学習モデルを提案する。
ほとんどの設定において、我々のアルゴリズムは、ほぼ最適の後悔境界に達することが示されている。
論文 参考訳(メタデータ) (2022-02-07T16:25:14Z) - Learning Optimal Antenna Tilt Control Policies: A Contextual Linear
Bandit Approach [65.27783264330711]
セルラーネットワークにおけるアンテナ傾きの制御は、ネットワークのカバレッジとキャパシティの間の効率的なトレードオフに到達するために不可欠である。
既存のデータから最適な傾き制御ポリシーを学習するアルゴリズムを考案する。
従来のルールベースの学習アルゴリズムよりもはるかに少ないデータサンプルを用いて最適な傾き更新ポリシーを作成できることを示す。
論文 参考訳(メタデータ) (2022-01-06T18:24:30Z) - Optimization Issues in KL-Constrained Approximate Policy Iteration [48.24321346619156]
多くの強化学習アルゴリズムは、近似ポリシー反復(API)のバージョンと見なすことができる。
標準APIはしばしば動作が悪いが、KL-divergenceによる各ポリシー更新を以前のポリシーに正規化することで学習が安定化できることが示されている。
TRPO、MPO、VMPOなどの一般的な実用的なアルゴリズムは、連続ポリシーのKL分割に関する制約によって正規化を置き換える。
論文 参考訳(メタデータ) (2021-02-11T19:35:33Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
強化学習は、マルコフ決定プロセスにおいて期待される累積報酬を最大化するポリシーを見つけることの問題を考える。
我々は、ポリシーを更新するために上昇方向として使用する値関数の偏りのないナビゲーション勾配を計算する。
ポリシー勾配型アルゴリズムの大きな欠点は、定常性の仮定が課せられない限り、それらがエピソジックなタスクに限定されていることである。
論文 参考訳(メタデータ) (2020-10-16T15:15:42Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
自然政策勾配法(NPG)は、最も広く使われている政策最適化アルゴリズムの一つである。
我々は,ソフトマックスパラメータ化の下で,エントロピー規則化NPG法に対する収束保証を開発する。
この結果から, エントロピー正則化の役割を浮き彫りにした。
論文 参考訳(メタデータ) (2020-07-13T17:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。