DALE: Differential Accumulated Local Effects for efficient and accurate
global explanations
- URL: http://arxiv.org/abs/2210.04542v1
- Date: Mon, 10 Oct 2022 10:27:48 GMT
- Title: DALE: Differential Accumulated Local Effects for efficient and accurate
global explanations
- Authors: Vasilis Gkolemis, Theodore Dalamagas, Christos Diou
- Abstract summary: Accumulated Local Effect (ALE) is a method for accurately estimating feature effects.
We propose Differential Accumulated Local Effects (DALE), which can be used in cases where the ML model is differentiable.
- Score: 3.3646058754940738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accumulated Local Effect (ALE) is a method for accurately estimating feature
effects, overcoming fundamental failure modes of previously-existed methods,
such as Partial Dependence Plots. However, ALE's approximation, i.e. the method
for estimating ALE from the limited samples of the training set, faces two
weaknesses. First, it does not scale well in cases where the input has high
dimensionality, and, second, it is vulnerable to out-of-distribution (OOD)
sampling when the training set is relatively small. In this paper, we propose a
novel ALE approximation, called Differential Accumulated Local Effects (DALE),
which can be used in cases where the ML model is differentiable and an
auto-differentiable framework is accessible. Our proposal has significant
computational advantages, making feature effect estimation applicable to
high-dimensional Machine Learning scenarios with near-zero computational
overhead. Furthermore, DALE does not create artificial points for calculating
the feature effect, resolving misleading estimations due to OOD sampling.
Finally, we formally prove that, under some hypotheses, DALE is an unbiased
estimator of ALE and we present a method for quantifying the standard error of
the explanation. Experiments using both synthetic and real datasets demonstrate
the value of the proposed approach.
Related papers
- Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - RHALE: Robust and Heterogeneity-aware Accumulated Local Effects [8.868822699365616]
Accumulated Local Effects (ALE) is a widely-used explainability method for isolating the average effect of a feature on the output.
It does not quantify the deviation of instance-level (local) effects from the average (global) effect, known as heterogeneity.
We propose Robust and Heterogeneity-aware ALE (RHALE) to address these limitations.
arXiv Detail & Related papers (2023-09-20T10:27:41Z) - DF2: Distribution-Free Decision-Focused Learning [53.2476224456902]
Decision-focused learning (DFL) has recently emerged as a powerful approach for predictthen-optimize problems.
Existing end-to-end DFL methods are hindered by three significant bottlenecks: model error, sample average approximation error, and distribution-based parameterization of the expected objective.
We present DF2 -- the first textit-free decision-focused learning method explicitly designed to address these three bottlenecks.
arXiv Detail & Related papers (2023-08-11T00:44:46Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
We propose a doubly robust two-stage semiparametric difference-in-difference estimator for estimating heterogeneous treatment effects.
The first stage allows a general set of machine learning methods to be used to estimate the propensity score.
In the second stage, we derive the rates of convergence for both the parametric parameter and the unknown function.
arXiv Detail & Related papers (2020-09-07T15:14:29Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.