Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis)
- URL: http://arxiv.org/abs/2502.07906v1
- Date: Tue, 11 Feb 2025 19:24:09 GMT
- Title: Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis)
- Authors: Alexander Mangulad Christgau,
- Abstract summary: This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
- Score: 55.2480439325792
- License:
- Abstract: This thesis contains a series of independent contributions to statistics, unified by a model-free perspective. The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning. Mathematical insights are obtained from concrete examples, and these insights are generalized to principles that permeate the rest of the thesis. The second chapter studies the concept of local independence, which describes whether the evolution of one stochastic process is directly influenced by another. To test local independence, we define a model-free parameter called the Local Covariance Measure (LCM). We formulate an estimator for the LCM, from which a test of local independence is proposed. We discuss how the size and power of the proposed test can be controlled uniformly and investigate the test in a simulation study. The third chapter focuses on covariate adjustment, a method used to estimate the effect of a treatment by accounting for observed confounding. We formulate a general framework that facilitates adjustment for any subset of covariate information. We identify the optimal covariate information for adjustment and, based on this, introduce the Debiased Outcome-adapted Propensity Estimator (DOPE) for efficient estimation of treatment effects. An instance of DOPE is implemented using neural networks, and we demonstrate its performance on simulated and real data. The fourth and final chapter introduces a model-free measure of the conditional association between an exposure and a time-to-event, which we call the Aalen Covariance Measure (ACM). We develop a model-free estimation method and show that it is doubly robust, ensuring $\sqrt{n}$-consistency provided that the nuisance functions can be estimated with modest rates. A simulation study demonstrates the use of our estimator in several settings.
Related papers
- Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.
By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.
We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Measuring Model Fairness under Noisy Covariates: A Theoretical
Perspective [26.704446184314506]
We study the problem of measuring the fairness of a machine learning model under noisy information.
We present a theoretical analysis that aims to characterize weaker conditions under which accurate fairness evaluation is possible.
arXiv Detail & Related papers (2021-05-20T18:36:28Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.