論文の概要: Improving The Reconstruction Quality by Overfitted Decoder Bias in
Neural Image Compression
- arxiv url: http://arxiv.org/abs/2210.04898v1
- Date: Mon, 10 Oct 2022 08:14:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 15:17:50.149886
- Title: Improving The Reconstruction Quality by Overfitted Decoder Bias in
Neural Image Compression
- Title(参考訳): ニューラル画像圧縮におけるオーバーフィットデコーダバイアスによる再構成品質の向上
- Authors: Oussama Jourairi, Muhammet Balcilar, Anne Lambert, Fran\c{c}ois
Schnitzler
- Abstract要約: 本稿では,デコーダのバイアスのサブセットをインスタンスベースで微調整することで,余分な符号化時間とわずかな追加信号コストと引き換えに再構成品質を向上させることを提案する。
提案手法は,どのエンドツーエンド圧縮手法にも適用でき,最先端のニューラルイメージ圧縮BDレートを3-5%向上させることができる。
- 参考スコア(独自算出の注目度): 3.058685580689605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: End-to-end trainable models have reached the performance of traditional
handcrafted compression techniques on videos and images. Since the parameters
of these models are learned over large training sets, they are not optimal for
any given image to be compressed. In this paper, we propose an instance-based
fine-tuning of a subset of decoder's bias to improve the reconstruction quality
in exchange for extra encoding time and minor additional signaling cost. The
proposed method is applicable to any end-to-end compression methods, improving
the state-of-the-art neural image compression BD-rate by $3-5\%$.
- Abstract(参考訳): エンドツーエンドのトレーニング可能なモデルは、ビデオや画像の従来の手作り圧縮技術のパフォーマンスに到達した。
これらのモデルのパラメータは大きなトレーニングセットで学習されるため、任意の画像が圧縮されるのに最適ではない。
本稿では,デコーダのバイアスのサブセットをインスタンスベースで微調整することで,余分な符号化時間とわずかな追加信号コストと引き換えに再構成品質を向上させることを提案する。
提案手法は,どのエンドツーエンド圧縮手法にも適用可能であり,最先端のニューラルイメージ圧縮BD-rateを3-5\%$で改善する。
関連論文リスト
- Enhancing the Rate-Distortion-Perception Flexibility of Learned Image
Codecs with Conditional Diffusion Decoders [7.485128109817576]
本研究では,デコーダとして使用する場合,条件拡散モデルが生成圧縮タスクにおいて有望な結果をもたらすことを示す。
本稿では,デコーダとして使用する場合,条件拡散モデルが生成圧縮タスクにおいて有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2024-03-05T11:48:35Z) - Traditional Transformation Theory Guided Model for Learned Image
Compression [10.914558012458425]
従来の変換理論で導かれる超低強度非可逆符号化ネットワークを提案する。
実験の結果,提案手法は圧縮性能と復元性能の両方において既存手法よりも優れていた。
論文 参考訳(メタデータ) (2024-02-24T06:54:29Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
エンド・ツー・エンドのディープ・トレーニング可能なモデルは、ビデオや画像の従来の手作り圧縮技術の性能をほぼ上回っている。
本稿では,このアモート化ギャップを小さなコストで低減する,シンプルで効率的なインスタンスベースのパラメータ化手法を提案する。
論文 参考訳(メタデータ) (2022-09-02T11:43:45Z) - A Unified Image Preprocessing Framework For Image Compression [5.813935823171752]
そこで我々は,既存のコーデックの性能向上を図るために,Kuchenと呼ばれる統合された画像圧縮前処理フレームワークを提案する。
このフレームワークは、ハイブリッドデータラベリングシステムと、パーソナライズされた前処理をシミュレートする学習ベースのバックボーンで構成されている。
その結果,我々の統合前処理フレームワークによって最適化された現代のコーデックは,常に最先端圧縮の効率を向上することを示した。
論文 参考訳(メタデータ) (2022-08-15T10:41:00Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
圧縮ビデオの細部を復元する深層学習アーキテクチャを開発した。
これにより,従来の圧縮補正法と比較して復元精度が向上することを示す。
我々は、ビットストリームで容易に利用できる量子化データに対して、我々のモデルを条件付けする。
論文 参考訳(メタデータ) (2022-01-31T18:56:04Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
ロスシー画像圧縮は、通信帯域を節約するために広範に行われ、望ましくない圧縮アーティファクトをもたらす。
圧縮画像に対する資源効率の高いブラインド品質向上手法(RBQE)を提案する。
提案手法は, 評価された画像の品質に応じて, 自動的にエンハンスメントを終了するか, 継続するかを決定することができる。
論文 参考訳(メタデータ) (2020-06-30T07:38:47Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
我々はJPEGファイル量子化行列を用いたアーティファクト修正のための新しいアーキテクチャを開発した。
これにより、特定の品質設定のためにトレーニングされたモデルに対して、単一のモデルで最先端のパフォーマンスを達成できます。
論文 参考訳(メタデータ) (2020-04-17T00:10:08Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。