論文の概要: Generating Executable Action Plans with Environmentally-Aware Language
Models
- arxiv url: http://arxiv.org/abs/2210.04964v1
- Date: Mon, 10 Oct 2022 18:56:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 14:19:34.070443
- Title: Generating Executable Action Plans with Environmentally-Aware Language
Models
- Title(参考訳): 環境対応言語モデルを用いた実行可能行動計画の生成
- Authors: Maitrey Gramopadhye, Daniel Szafir
- Abstract要約: 大量のテキストデータセットを使用してトレーニングされた大規模言語モデル(LLM)は、最近、ロボットエージェントのアクションプランを生成することを約束している。
本研究では,環境に配慮したアクションプランを生成する手法を提案する。
- 参考スコア(独自算出の注目度): 4.162663632560141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) trained using massive text datasets have
recently shown promise in generating action plans for robotic agents from high
level text queries. However, these models typically do not consider the robot's
environment, resulting in generated plans that may not actually be executable
due to ambiguities in the planned actions or environmental constraints. In this
paper, we propose an approach to generate environmentally-aware action plans
that can be directly mapped to executable agent actions. Our approach involves
integrating environmental objects and object relations as additional inputs
into LLM action plan generation to provide the system with an awareness of its
surroundings, resulting in plans where each generated action is mapped to
objects present in the scene. We also design a novel scoring function that,
along with generating the action steps and associating them with objects, helps
the system disambiguate among object instances and take into account their
states. We evaluate our approach using the VirtualHome simulator and the
ActivityPrograms knowledge base. Our results show that the action plans
generated from our system outperform prior work in terms of their correctness
and executability by 5.3% and 8.9% respectively.
- Abstract(参考訳): 大量のテキストデータセットを使用してトレーニングされた大規模言語モデル(LLM)は、最近、ハイレベルテキストクエリからロボットエージェントのアクションプランを生成することを約束している。
しかしながら、これらのモデルは通常ロボットの環境を考慮せず、結果として計画された行動や環境制約の曖昧さのために実際に実行できないような計画が生成される。
本稿では,実行可能エージェントアクションに直接マッピング可能な環境対応アクションプランを生成する手法を提案する。
本手法では,環境オブジェクトとオブジェクトの関係をLLMアクションプラン生成に付加的な入力として統合し,環境に対する意識をシステムに提供し,各アクションをシーンに存在するオブジェクトにマッピングする計画を作成する。
また、アクションステップを生成してオブジェクトと関連付けるとともに、システムがオブジェクトインスタンス間で曖昧にし、状態を考慮するのに役立つ新しいスコアリング関数を設計する。
我々はVirtualHomeシミュレータとActivityProgramsナレッジベースを用いたアプローチの評価を行った。
その結果,我々のシステムから生成された行動プランは,その正しさと実行可能性でそれぞれ5.3%,実行可能性が8.9%向上した。
関連論文リスト
- DynaSaur: Large Language Agents Beyond Predefined Actions [108.75187263724838]
既存のLLMエージェントシステムは、通常、各ステップで固定セットと事前定義されたセットからアクションを選択する。
動作の動的生成と構成をオンラインで実現するLLMエージェントフレームワークを提案する。
GAIAベンチマーク実験により, このフレームワークは柔軟性が向上し, 従来の手法よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2024-11-04T02:08:59Z) - Language Models can Infer Action Semantics for Symbolic Planners from Environment Feedback [26.03718733867297]
言語モデルを用いた行動予測法(PSALM)を提案する。
PSALMはシンボルプランナーとLarge Language Models(LLM)の強みを活用することでアクションセマンティクスを学習する
実験の結果、PSALMは計画の成功率を36.4%(Claude-3.5)から100%に向上させ、基礎となる真理ドメインのアクションセマンティクスを推論する以前の作業よりも効率的に環境を探索する。
論文 参考訳(メタデータ) (2024-06-04T21:29:56Z) - PDDLEGO: Iterative Planning in Textual Environments [56.12148805913657]
テキスト環境における計画は、現在のモデルにおいても長年にわたる課題であることが示されている。
我々は,あるサブゴールの部分的な計画に導く計画表現を反復的に構築するPDDLEGOを提案する。
数ショットのPDDLEGOで作成するプランは,Coin Collectorシミュレーションでエンドツーエンドのプランを生成するよりも43%効率がよいことを示す。
論文 参考訳(メタデータ) (2024-05-30T08:01:20Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Language Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents [111.33545170562337]
自然言語で表現された高レベルなタスクを、選択された実行可能なステップのセットに基底付ける可能性について検討する。
事前学習したLMが十分に大きく、適切に誘導された場合、ハイレベルなタスクを効果的に低レベルな計画に分解できることがわかった。
本稿では,既存の実演の条件を規定し,計画が許容可能な行動に意味的に変換される手順を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。