論文の概要: Label Noise-Robust Learning using a Confidence-Based Sieving Strategy
- arxiv url: http://arxiv.org/abs/2210.05330v1
- Date: Tue, 11 Oct 2022 10:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 16:46:05.511558
- Title: Label Noise-Robust Learning using a Confidence-Based Sieving Strategy
- Title(参考訳): 信頼度に基づくシービング戦略を用いたラベルノイズロバスト学習
- Authors: Reihaneh Torkzadehmahani, Reza Nasirigerdeh, Daniel Rueckert, Georgios
Kaissis
- Abstract要約: ラベルノイズを伴うタスクの学習では、オーバーフィッティングに対するモデルの堅牢性を高めることが重要な課題である。
サンプルをラベルの破損で識別し、モデルを学習するのを防ぐ。
本研究では, 信頼度誤差と呼ばれる新しい判別基準と, クリーンサンプルとノイズサンプルを効果的に識別するためのCONFESと呼ばれるシービング戦略を提案する。
- 参考スコア(独自算出の注目度): 9.247916849341028
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In learning tasks with label noise, boosting model robustness against
overfitting is a pivotal challenge because the model eventually memorizes
labels including the noisy ones. Identifying the samples with corrupted labels
and preventing the model from learning them is a promising approach to address
this challenge. Per-sample training loss is a previously studied metric that
considers samples with small loss as clean samples on which the model should be
trained. In this work, we first demonstrate the ineffectiveness of this
small-loss trick. Then, we propose a novel discriminator metric called
confidence error and a sieving strategy called CONFES to effectively
differentiate between the clean and noisy samples. We experimentally illustrate
the superior performance of our proposed approach compared to recent studies on
various settings such as synthetic and real-world label noise.
- Abstract(参考訳): ラベルノイズを伴うタスクの学習において、モデルがオーバーフィッティングに対する堅牢性を高めることは重要な課題である。
サンプルをラベルで識別し、モデルを学習するのを防ぐことは、この課題に対処するための有望なアプローチである。
サンプルごとのトレーニング損失(per-sample training loss)は、モデルがトレーニングされるべきクリーンなサンプルとして、小さな損失を持つサンプルを考慮した以前に研究されたメトリクスである。
本研究では,この小さめのトリックの非効率性を最初に示す。
そこで本研究では,信頼度誤差と呼ばれる新しい判別指標とconfesと呼ばれるシーブ戦略を提案し,クリーンサンプルとノイズサンプルを効果的に区別する。
提案手法の優れた性能を,合成や実世界のラベルノイズなど,様々な環境下での最近の研究と比較した。
関連論文リスト
- Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts [4.795811957412855]
ほとんどの現実世界の機械学習アプリケーションでは、データのノイズは避けられないように思える。
マルチラベル分類における雑音ラベル学習の分野について検討した。
我々のモデルは、雑音のラベル付けは潜伏変数の変化から生じると仮定し、より堅牢で有益な学習手段を提供する。
論文 参考訳(メタデータ) (2025-02-20T05:41:52Z) - Mitigating Instance-Dependent Label Noise: Integrating Self-Supervised Pretraining with Pseudo-Label Refinement [3.272177633069322]
実世界のデータセットは、アノテーションプロセス中にヒューマンエラー、あいまいさ、リソース制約のために、ノイズの多いラベルを含むことが多い。
そこで本研究では,SimCLRを用いた自己教師型学習と反復的擬似ラベル改良を組み合わせた新しいフレームワークを提案する。
提案手法は,特に高騒音条件下では,いくつかの最先端手法よりも優れる。
論文 参考訳(メタデータ) (2024-12-06T09:56:49Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
そこで我々は,分布マッチングの観点から,クラスプロトタイプを用いた新しい擬似ラベリング手法を開発した。
手動で特定の確率尺度を設定することで、ノイズと長い尾を持つデータの副作用を同時に減らすことができる。
本手法は, クリーンなラベル付きクラスバランスサブセットを抽出し, ラベルノイズ付きロングテール分類において, 効果的な性能向上を実現する。
論文 参考訳(メタデータ) (2024-04-10T07:34:37Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
実世界のデータセットには、ノイズの多いラベルだけでなく、クラス不均衡も含まれている。
不均衡なデータセットにおけるノイズラベルに対処する,単純かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-17T10:34:53Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets [23.4536532321199]
不整合データセットのラベルノイズを処理するための不確かさを意識したラベル補正フレームワークを提案する。
本研究では,不均衡なデータセットのラベルノイズを処理するために,不確かさを意識したラベル補正フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-12T11:35:55Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Label Noise in Adversarial Training: A Novel Perspective to Study Robust
Overfitting [45.58217741522973]
逆行訓練においてラベルノイズが存在することを示す。
このようなラベルノイズは、正反対例の真のラベル分布とクリーン例から受け継いだラベルとのミスマッチに起因する。
本稿では,ラベルノイズと頑健なオーバーフィッティングに対処するため,ラベルの自動校正手法を提案する。
論文 参考訳(メタデータ) (2021-10-07T01:15:06Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
オープンセットノイズラベルは非毒性であり, 固有ノイズラベルに対するロバスト性にも寄与することを示した。
本研究では,動的雑音ラベル(ODNL)を用いたオープンセットサンプルをトレーニングに導入することで,シンプルかつ効果的な正規化を提案する。
論文 参考訳(メタデータ) (2021-06-21T07:15:50Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - Robustness of Accuracy Metric and its Inspirations in Learning with
Noisy Labels [51.66448070984615]
十分な数の雑音サンプルに対してトレーニング精度を最大化すると,ほぼ最適な分類器が得られることを示す。
検証のために、ノイズの多い検証セットが信頼できることを証明し、モデル選択のクリティカルな要求に対処する。
理論結果に動機づけられて,ノイズラベルをトレーニングしたモデルの特徴付けを行い,ノイズ検証セットの有用性を検証する。
論文 参考訳(メタデータ) (2020-12-08T03:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。