SegNetr: Rethinking the local-global interactions and skip connections
in U-shaped networks
- URL: http://arxiv.org/abs/2307.02953v2
- Date: Fri, 21 Jul 2023 09:26:06 GMT
- Title: SegNetr: Rethinking the local-global interactions and skip connections
in U-shaped networks
- Authors: Junlong Cheng, Chengrui Gao, Fengjie Wang, Min Zhu
- Abstract summary: U-shaped networks have dominated the field of medical image segmentation due to their simple and easily tuned structure.
We introduce a novel SegNetr block that can perform local-global interactions dynamically at any stage and with only linear complexity.
We validate the effectiveness of SegNetr on four mainstream medical image segmentation datasets, with 59% and 76% fewer parameters and GFLOPs than vanilla U-Net.
- Score: 1.121518046252855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, U-shaped networks have dominated the field of medical image
segmentation due to their simple and easily tuned structure. However, existing
U-shaped segmentation networks: 1) mostly focus on designing complex
self-attention modules to compensate for the lack of long-term dependence based
on convolution operation, which increases the overall number of parameters and
computational complexity of the network; 2) simply fuse the features of encoder
and decoder, ignoring the connection between their spatial locations. In this
paper, we rethink the above problem and build a lightweight medical image
segmentation network, called SegNetr. Specifically, we introduce a novel
SegNetr block that can perform local-global interactions dynamically at any
stage and with only linear complexity. At the same time, we design a general
information retention skip connection (IRSC) to preserve the spatial location
information of encoder features and achieve accurate fusion with the decoder
features. We validate the effectiveness of SegNetr on four mainstream medical
image segmentation datasets, with 59\% and 76\% fewer parameters and GFLOPs
than vanilla U-Net, while achieving segmentation performance comparable to
state-of-the-art methods. Notably, the components proposed in this paper can be
applied to other U-shaped networks to improve their segmentation performance.
Related papers
- LKASeg:Remote-Sensing Image Semantic Segmentation with Large Kernel Attention and Full-Scale Skip Connections [27.473573286685063]
We propose a remote-sensing image semantic segmentation network named LKASeg.
LKASeg combines Large Kernel Attention(LSKA) and Full-Scale Skip Connections(FSC)
On the ISPRS Vaihingen dataset, the mF1 and mIoU scores achieved 90.33% and 82.77%.
arXiv Detail & Related papers (2024-10-14T12:25:48Z) - Towards Diverse Binary Segmentation via A Simple yet General Gated Network [71.19503376629083]
We propose a simple yet general gated network (GateNet) to tackle binary segmentation tasks.
With the help of multi-level gate units, the valuable context information from the encoder can be selectively transmitted to the decoder.
We introduce a "Fold" operation to improve the atrous convolution and form a novel folded atrous convolution.
arXiv Detail & Related papers (2023-03-18T11:26:36Z) - DPANET:Dual Pooling Attention Network for Semantic Segmentation [0.0]
We propose a lightweight and flexible neural network named Dual Pool Attention Network(DPANet)
The first component is spatial pool attention module, we formulate an easy and powerful method densely to extract contextual characteristics.
The second component is channel pool attention module. So, the aim of this module is stripping them out, in order to construct relationship of all channels and heighten different channels semantic information selectively.
arXiv Detail & Related papers (2022-10-11T13:29:33Z) - EAA-Net: Rethinking the Autoencoder Architecture with Intra-class
Features for Medical Image Segmentation [4.777011444412729]
We propose a light-weight end-to-end segmentation framework based on multi-task learning, termed Edge Attention autoencoder Network (EAA-Net)
Our approach not only utilizes the segmentation network to obtain inter-class features, but also applies the reconstruction network to extract intra-class features among the foregrounds.
Experimental results show that our method performs well in medical image segmentation tasks.
arXiv Detail & Related papers (2022-08-19T07:42:55Z) - Towards Bi-directional Skip Connections in Encoder-Decoder Architectures
and Beyond [95.46272735589648]
We propose backward skip connections that bring decoded features back to the encoder.
Our design can be jointly adopted with forward skip connections in any encoder-decoder architecture.
We propose a novel two-phase Neural Architecture Search (NAS) algorithm, namely BiX-NAS, to search for the best multi-scale skip connections.
arXiv Detail & Related papers (2022-03-11T01:38:52Z) - Deep Multi-Branch Aggregation Network for Real-Time Semantic
Segmentation in Street Scenes [32.54045305607654]
Many state-of-the-art real-time semantic segmentation methods tend to sacrifice some spatial details or contextual information for fast inference.
We propose a novel Deep Multi-branch Aggregation Network (called DMA-Net) based on the encoder-decoder structure to perform real-time semantic segmentation in street scenes.
Our proposed DMA-Net respectively obtains 77.0% and 73.6% mean Intersection over Union (mIoU) at the inference speed of 46.7 FPS and 119.8 FPS by only using a single NVIDIA GTX 1080Ti GPU.
arXiv Detail & Related papers (2022-03-08T12:07:32Z) - Stage-Aware Feature Alignment Network for Real-Time Semantic
Segmentation of Street Scenes [59.81228011432776]
We present a novel Stage-aware Feature Alignment Network (SFANet) for real-time semantic segmentation of street scenes.
By taking into account the unique role of each stage in the decoder, a novel stage-aware Feature Enhancement Block (FEB) is designed to enhance spatial details and contextual information of feature maps from the encoder.
Experimental results show that the proposed SFANet exhibits a good balance between accuracy and speed for real-time semantic segmentation of street scenes.
arXiv Detail & Related papers (2022-03-08T11:46:41Z) - Local Memory Attention for Fast Video Semantic Segmentation [157.7618884769969]
We propose a novel neural network module that transforms an existing single-frame semantic segmentation model into a video semantic segmentation pipeline.
Our approach aggregates a rich representation of the semantic information in past frames into a memory module.
We observe an improvement in segmentation performance on Cityscapes by 1.7% and 2.1% in mIoU respectively, while increasing inference time of ERFNet by only 1.5ms.
arXiv Detail & Related papers (2021-01-05T18:57:09Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Interactive Video Object Segmentation Using Global and Local Transfer
Modules [51.93009196085043]
We develop a deep neural network, which consists of the annotation network (A-Net) and the transfer network (T-Net)
Given user scribbles on a frame, A-Net yields a segmentation result based on the encoder-decoder architecture.
We train the entire network in two stages, by emulating user scribbles and employing an auxiliary loss.
arXiv Detail & Related papers (2020-07-16T06:49:07Z) - Multi-level Context Gating of Embedded Collective Knowledge for Medical
Image Segmentation [32.96604621259756]
We propose an extension of U-Net for medical image segmentation.
We take full advantages of U-Net, Squeeze and Excitation (SE) block, bi-directional ConvLSTM (BConvLSTM), and the mechanism of dense convolutions.
The proposed model is evaluated on six datasets.
arXiv Detail & Related papers (2020-03-10T12:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.