論文の概要: Like a bilingual baby: The advantage of visually grounding a bilingual
language model
- arxiv url: http://arxiv.org/abs/2210.05487v1
- Date: Tue, 11 Oct 2022 14:43:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 15:44:21.911566
- Title: Like a bilingual baby: The advantage of visually grounding a bilingual
language model
- Title(参考訳): バイリンガル・ベビー:バイリンガル言語モデルによる視覚的基盤化の利点
- Authors: Khai-Nguyen Nguyen and Zixin Tang and Ankur Mali and Alex Kelly
- Abstract要約: 我々は、MS-COCO-ESから英語とスペイン語の画像やキャプションに基づいてLSTM言語モデルを訓練する。
視覚的基盤は、言語内および言語間のセマンティックな類似性に対するモデルの理解を改善し、パープレキシティを改善する。
本研究は,視覚的基盤言語モデルの利点を裏付ける追加の証拠を提供し,多言語話者と知覚的基盤を持つ多言語データセットからのより自然主義的な言語データの必要性を指摘する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlike most neural language models, humans learn language in a rich,
multi-sensory and, often, multi-lingual environment. Current language models
typically fail to fully capture the complexities of multilingual language use.
We train an LSTM language model on images and captions in English and Spanish
from MS-COCO-ES. We find that the visual grounding improves the model's
understanding of semantic similarity both within and across languages and
improves perplexity. However, we find no significant advantage of visual
grounding for abstract words. Our results provide additional evidence of the
advantages of visually grounded language models and point to the need for more
naturalistic language data from multilingual speakers and multilingual datasets
with perceptual grounding.
- Abstract(参考訳): ほとんどのニューラル言語モデルとは異なり、人間は豊かで多言語的な環境で言語を学ぶ。
現在の言語モデルは通常、多言語言語の使用の複雑さを完全に捉えることができない。
LSTM言語モデルをMS-COCO-ESから英語とスペイン語の画像とキャプションに基づいて学習する。
視覚的基盤は、言語内および言語間のセマンティックな類似性に対するモデルの理解を改善し、パープレキシティを改善する。
しかし,抽象語に対する視覚的接頭辞の顕著な利点は見つからなかった。
本研究は,視覚基盤言語モデルの利点のさらなる証拠を提供し,知覚基盤を持つ多言語話者と多言語データセットからのより自然主義的な言語データの必要性を指摘する。
関連論文リスト
- Analyzing The Language of Visual Tokens [48.62180485759458]
我々は、離散的な視覚言語を分析するために、自然言語中心のアプローチをとる。
トークンの高度化はエントロピーの増大と圧縮の低下を招き,トークンが主にオブジェクト部品を表すことを示す。
また、視覚言語には結合的な文法構造が欠如していることが示され、自然言語と比較して難易度が高く、階層構造が弱いことが判明した。
論文 参考訳(メタデータ) (2024-11-07T18:59:28Z) - Lexicon-Level Contrastive Visual-Grounding Improves Language Modeling [47.7950860342515]
LexiContrastive Grounding (LCG)は、視覚的監督を利用してテキスト表現を改善する言語学習手法である。
LCGは学習効率において標準言語のみのモデルより優れている。
CLIP、GIT、Flamingo、Vokenizationなど、視覚と言語による学習手順を改善する。
論文 参考訳(メタデータ) (2024-03-21T16:52:01Z) - The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
多言語モデルにおける言語表現について検討する。
我々は、コミュニティ中心のモデルが、低リソース言語で同じ家系の言語を区別する上で、より良い性能を発揮することを実験から観察した。
論文 参考訳(メタデータ) (2023-10-20T02:26:34Z) - Hindi as a Second Language: Improving Visually Grounded Speech with
Semantically Similar Samples [89.16814518860357]
本研究の目的は,多言語の観点からの視覚的基盤音声モデル(VGS)の学習を検討することである。
この研究における重要な貢献は、低リソース言語の性能を向上させるために、バイリンガルな視覚的基盤を持つ音声モデルにおける高リソース言語のパワーを活用することである。
論文 参考訳(メタデータ) (2023-03-30T16:34:10Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
我々は,言語トークンを関連画像に文脈的にマッピングすることで,言語のみのデータに対するマルチモーダルアライメントを補間する手法を開発した。
語彙化」は比較的小さな画像キャプションデータセットに基づいて訓練され、それを大規模言語コーパスのための語彙生成に適用する。
これらの文脈的に生成された語彙を用いて学習し、視覚的に制御された言語モデルにより、複数の純粋言語タスクにおいて、自己教師による代替よりも一貫した改善が示される。
論文 参考訳(メタデータ) (2020-10-14T02:11:51Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。