Evaluating Unsupervised Denoising Requires Unsupervised Metrics
- URL: http://arxiv.org/abs/2210.05553v3
- Date: Tue, 30 May 2023 22:24:41 GMT
- Title: Evaluating Unsupervised Denoising Requires Unsupervised Metrics
- Authors: Adria Marcos-Morales, Matan Leibovich, Sreyas Mohan, Joshua Lawrence
Vincent, Piyush Haluai, Mai Tan, Peter Crozier, Carlos Fernandez-Granda
- Abstract summary: Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise.
No metrics are available to evaluate these methods in an unsupervised fashion.
We propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR)
- Score: 16.067013621304348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised denoising is a crucial challenge in real-world imaging
applications. Unsupervised deep-learning methods have demonstrated impressive
performance on benchmarks based on synthetic noise. However, no metrics are
available to evaluate these methods in an unsupervised fashion. This is highly
problematic for the many practical applications where ground-truth clean images
are not available. In this work, we propose two novel metrics: the unsupervised
mean squared error (MSE) and the unsupervised peak signal-to-noise ratio
(PSNR), which are computed using only noisy data. We provide a theoretical
analysis of these metrics, showing that they are asymptotically consistent
estimators of the supervised MSE and PSNR. Controlled numerical experiments
with synthetic noise confirm that they provide accurate approximations in
practice. We validate our approach on real-world data from two imaging
modalities: videos in raw format and transmission electron microscopy. Our
results demonstrate that the proposed metrics enable unsupervised evaluation of
denoising methods based exclusively on noisy data.
Related papers
- SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Direct Unsupervised Denoising [60.71146161035649]
Unsupervised denoisers do not directly produce a single prediction, such as the MMSE estimate.
We present an alternative approach that trains a deterministic network alongside the VAE to directly predict a central tendency.
arXiv Detail & Related papers (2023-10-27T13:02:12Z) - Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising [6.314790045423454]
Noise2Contrast combines information from multiple measured image contrasts to train a denoising model.
We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss.
Our experiments on different real measured data sets indicate that Noise2Contrast generalizes to other multi-contrast imaging modalities.
arXiv Detail & Related papers (2022-12-09T13:03:24Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric
PD and Blind-Spot Network [60.650035708621786]
Blind-spot network (BSN) and its variants have made significant advances in self-supervised denoising.
It is challenging to deal with spatially correlated real-world noise using self-supervised BSN.
Recently, pixel-shuffle downsampling (PD) has been proposed to remove the spatial correlation of real-world noise.
We propose an Asymmetric PD (AP) to address this issue, which introduces different PD stride factors for training and inference.
arXiv Detail & Related papers (2022-03-22T15:04:37Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Suppression of Correlated Noise with Similarity-based Unsupervised Deep
Learning [7.61850613267116]
Noise2Sim is an unsupervised deep denoising approach that works in a nonlocal nonlinear fashion to suppress correlated noises.
Nosie2Sim recovers features from noisy low-dose and photon-counting CT images as effectively as or even better than supervised learning methods.
arXiv Detail & Related papers (2020-11-06T14:31:08Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverse is a deep CNN-based denoising method for linear image reconstruction algorithms.
We develop a theoretical framework which shows that such training indeed obtains a denoising CNN.
On simulated CT datasets, Noise2Inverse demonstrates an improvement in peak signal-to-noise ratio and structural similarity index.
arXiv Detail & Related papers (2020-01-31T12:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.