Incandescent temporal metamaterials
- URL: http://arxiv.org/abs/2210.05565v1
- Date: Tue, 11 Oct 2022 16:00:00 GMT
- Title: Incandescent temporal metamaterials
- Authors: J. Enrique V\'azquez-Lozano and I\~nigo Liberal
- Abstract summary: Time-varying media can be seized to control and manipulate wave phenomena.
Time-modulation releases strong field fluctuations confined within epsilon-near-zero bodies.
It enables a narrowband (partially coherent) emission spanning the whole range of wavevectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regarded as a promising alternative to spatially shaping matter, time-varying
media can be seized to control and manipulate wave phenomena, including thermal
radiation. Here, based upon the framework of macroscopic quantum
electrodynamics, we elaborate a comprehensive quantum theoretical formulation
that lies the basis for investigating thermal emission effects in
time-modulated media. Our theory unveils new physics brought about by
time-varying media: nontrivial correlations between thermal fluctuating
currents at different frequencies and positions, thermal radiation overcoming
the black-body spectrum, and quantum vacuum amplification effects at finite
temperature. We illustrate how these features lead to striking phenomena and
novel thermal emitters, specifically, showing that the time-modulation releases
strong field fluctuations confined within epsilon-near-zero (ENZ) bodies, and
that, in turn, it enables a narrowband (partially coherent) emission spanning
the whole range of wavevectors, from near to far-field regimes.
Related papers
- Divergence of thermalization rates driven by the competition between finite temperature and quantum coherence [10.256367888517563]
We observe a divergence of thermalization rates of quantum matters when the temperature approaches zero.
We find that the quantum coherence and bosonic stimulation of superfluid induces the divergence while the finite temperature and the many-body interactions are suppressing the divergence.
arXiv Detail & Related papers (2024-10-30T02:10:29Z) - Can thermal emission from time-varying media be described
semiclassically? [0.0]
We derive a semiclassical theory to thermal emission from time-varying media based on fluctuational electrodynamics.
Our results show that a quantum theory is needed to correctly capture the contribution from quantum vacuum amplifications effects.
arXiv Detail & Related papers (2024-01-18T11:22:22Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Quantum control of solid-state qubits for thermodynamic applications [0.0]
We consider a single emitter of excitons driven by time-dependent laser fields.
We show that the form of the driving field can be tailored to produce different thermodynamic processes.
We discuss these effects from the perspective of quantum thermodynamics and outline the possibility of using them for optical cooling of solids to low temperatures.
arXiv Detail & Related papers (2021-03-24T11:17:24Z) - Near-Field Radiative Heat Transfer Eigenmodes [55.41644538483948]
Near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer.
We present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures.
arXiv Detail & Related papers (2021-02-10T23:14:30Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.