論文の概要: Towards Consistency and Complementarity: A Multiview Graph Information
Bottleneck Approach
- arxiv url: http://arxiv.org/abs/2210.05676v1
- Date: Tue, 11 Oct 2022 13:51:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 12:51:33.467813
- Title: Towards Consistency and Complementarity: A Multiview Graph Information
Bottleneck Approach
- Title(参考訳): 一貫性と相補性に向けて:マルチビューグラフ情報ボトルネックアプローチ
- Authors: Xiaolong Fan and Maoguo Gong and Yue Wu and Mingyang Zhang and Hao Li
and Xiangming Jiang
- Abstract要約: 共有(一貫性)とビュー固有(相補性)情報をモデル化し、統合する方法は、マルチビューグラフ解析において重要な問題である。
本稿では,共通表現の合意とビュー固有表現の不一致を最大化するために,MVGIB(Multiview Variational Graph Information Bottleneck)の原理を提案する。
- 参考スコア(独自算出の注目度): 25.40829979251883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The empirical studies of Graph Neural Networks (GNNs) broadly take the
original node feature and adjacency relationship as singleview input, ignoring
the rich information of multiple graph views. To circumvent this issue, the
multiview graph analysis framework has been developed to fuse graph information
across views. How to model and integrate shared (i.e. consistency) and
view-specific (i.e. complementarity) information is a key issue in multiview
graph analysis. In this paper, we propose a novel Multiview Variational Graph
Information Bottleneck (MVGIB) principle to maximize the agreement for common
representations and the disagreement for view-specific representations. Under
this principle, we formulate the common and view-specific information
bottleneck objectives across multiviews by using constraints from mutual
information. However, these objectives are hard to directly optimize since the
mutual information is computationally intractable. To tackle this challenge, we
derive variational lower and upper bounds of mutual information terms, and then
instead optimize variational bounds to find the approximate solutions for the
information objectives. Extensive experiments on graph benchmark datasets
demonstrate the superior effectiveness of the proposed method.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の実証研究は、元のノードの特徴と隣接関係を単一ビュー入力として、複数のグラフビューの豊富な情報を無視している。
この問題を回避するため、マルチビューグラフ分析フレームワークが開発され、ビューにまたがるグラフ情報を融合している。
共有(一貫性)とビュー固有(相補性)情報をモデル化し、統合する方法は、マルチビューグラフ解析において重要な問題である。
本稿では,共通表現の合意とビュー固有表現の不一致を最大化するために,MVGIB(Multiview Variational Graph Information Bottleneck)の原理を提案する。
この原則の下で、相互情報からの制約を用いて、多視点間における共通およびビュー固有の情報ボトルネックの目標を定式化する。
しかし、相互情報が計算的に難解であるため、これらの目的を直接最適化することは困難である。
この課題に取り組むために、相互情報項の変分下界と上界を導出し、代わりに変分境界を最適化して情報目的の近似解を求める。
グラフベンチマークデータセットの広範な実験により,提案手法の有効性が示された。
関連論文リスト
- Multiview Graph Learning with Consensus Graph [24.983233822595274]
グラフトポロジ推論は多くのアプリケーション領域において重要なタスクである。
多くの現代のデータセットは異質または混合であり、複数の関連するグラフ、すなわちマルチビューグラフを含んでいる。
コンセンサス正則化に基づく代替手法を提案する。
また、脳波記録(EEG)から複数の被験者の脳機能接続ネットワークを推定するためにも用いられる。
論文 参考訳(メタデータ) (2024-01-24T19:35:54Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
本稿では,特徴集合をグラフノードとして表現し,それらの関係を学習可能なエッジとして表現することで,特徴集合の依存関係を学習するデータ駆動型アプローチを提案する。
また,複数のビューから情報を動的に集約するために,より小さな潜在グラフを学習する新しい階層グラフオートエンコーダLEGATOを導入する。
論文 参考訳(メタデータ) (2023-05-31T10:36:10Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
差別化可能なノード選択(MGCN-DNS)を備えた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目的としている。
提案手法の有効性は,最先端手法と厳密な比較により検証した。
論文 参考訳(メタデータ) (2022-12-09T21:48:36Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - Variational Graph Generator for Multi-View Graph Clustering [13.721803208437755]
マルチビューグラフクラスタリング(VGMGC)のための変分グラフ生成器を提案する。
複数のグラフに対する事前仮定に基づいて、信頼性のある変分収束グラフを推定するために、新しい変分グラフ生成法を提案する。
単純なグラフエンコーダとマルチビュークラスタリングの目的を併用して,クラスタリングのためのグラフ埋め込みを学習する。
論文 参考訳(メタデータ) (2022-10-13T13:19:51Z) - r-GAT: Relational Graph Attention Network for Multi-Relational Graphs [8.529080554172692]
Graph Attention Network (GAT)は、単純な無方向性グラフと単一のリレーショナルグラフデータのみをモデル化することに焦点を当てている。
マルチチャネルエンティティ表現を学習するための関係グラフアテンションネットワークであるr-GATを提案する。
リンク予測とエンティティ分類タスクの実験は、我々のr-GATがマルチリレーショナルグラフを効果的にモデル化できることを示します。
論文 参考訳(メタデータ) (2021-09-13T12:43:00Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
グラフ学習は、複数のビューから統一的で堅牢なグラフを学ぶ能力を備えた、マルチビュークラスタリングのための有望なテクニックとして登場した。
本稿では,統合目的関数における多視点一貫性と多視点不整合を同時にモデル化する,新しい多視点グラフ学習フレームワークを提案する。
12のマルチビューデータセットに対する実験は、提案手法の堅牢性と効率性を実証した。
論文 参考訳(メタデータ) (2020-08-24T06:11:29Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。