Stochastic Constrained DRO with a Complexity Independent of Sample Size
- URL: http://arxiv.org/abs/2210.05740v2
- Date: Wed, 16 Aug 2023 07:06:58 GMT
- Title: Stochastic Constrained DRO with a Complexity Independent of Sample Size
- Authors: Qi Qi, Jiameng Lyu, Kung sik Chan, Er Wei Bai, Tianbao Yang
- Abstract summary: We propose and analyze algorithms that apply to both non- and convex losses for solving Kullback divergence constrained DRO problem.
We establish a nearly optimal complexity for finding an $$ilon stationary solution for non- losses and an optimal batch complexity for finding an optimal solution for broad applications.
- Score: 38.56406595022129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributionally Robust Optimization (DRO), as a popular method to train
robust models against distribution shift between training and test sets, has
received tremendous attention in recent years. In this paper, we propose and
analyze stochastic algorithms that apply to both non-convex and convex losses
for solving Kullback Leibler divergence constrained DRO problem. Compared with
existing methods solving this problem, our stochastic algorithms not only enjoy
competitive if not better complexity independent of sample size but also just
require a constant batch size at every iteration, which is more practical for
broad applications. We establish a nearly optimal complexity bound for finding
an $\epsilon$ stationary solution for non-convex losses and an optimal
complexity for finding an $\epsilon$ optimal solution for convex losses.
Empirical studies demonstrate the effectiveness of the proposed algorithms for
solving non-convex and convex constrained DRO problems.
Related papers
- Large-Scale Non-convex Stochastic Constrained Distributionally Robust Optimization [23.029511473335145]
This paper focuses on constrained DRO, which has an explicit characterization of the robustness of its performance.
The complexity of our algorithm at each $chi2$-divergences point$ is independent overall dataset size, and thus is suitable for large-scale applications.
arXiv Detail & Related papers (2024-04-01T15:56:58Z) - A Primal-Dual Algorithm for Faster Distributionally Robust Optimization [12.311794669976047]
We present Drago, a primal-dual algorithm that achieves a state-of-the-art linear convergence rate on strongly convex-strongly concave DRO problems.
We support our theoretical results with numerical benchmarks in classification and regression.
arXiv Detail & Related papers (2024-03-16T02:06:14Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Single-Trajectory Distributionally Robust Reinforcement Learning [21.955807398493334]
We propose Distributionally Robust RL (DRRL) to enhance performance across a range of environments.
Existing DRRL algorithms are either model-based or fail to learn from a single sample trajectory.
We design a first fully model-free DRRL algorithm, called distributionally robust Q-learning with single trajectory (DRQ)
arXiv Detail & Related papers (2023-01-27T14:08:09Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Sinkhorn Distributionally Robust Optimization [15.194516549163245]
We derive convex programming dual reformulation for general nominal distributions, transport costs, and loss functions.
Compared with Wasserstein DRO, our proposed approach offers enhanced computational tractability for a broader class of loss functions.
arXiv Detail & Related papers (2021-09-24T12:40:48Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
This paper proposes a working set algorithm for non-regular regularizers with convergence guarantees.
Our results demonstrate high gain compared to the full problem solver for both block-coordinates or a gradient solver.
arXiv Detail & Related papers (2020-06-24T07:40:31Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.