Short-term prediction of stream turbidity using surrogate data and a
meta-model approach
- URL: http://arxiv.org/abs/2210.05821v1
- Date: Tue, 11 Oct 2022 23:05:32 GMT
- Title: Short-term prediction of stream turbidity using surrogate data and a
meta-model approach
- Authors: Bhargav Rele, Caleb Hogan, Sevvandi Kandanaarachchi, Catherine Leigh
- Abstract summary: We build and compare the ability of dynamic regression (ARIMA), long short-term memory neural nets (LSTM), and generalized additive models (GAM) to forecast stream turbidity.
We construct a meta-model, trained on time-series features of turbidity, to take advantage of the strengths of each model over different time points.
Our findings indicate that temperature and light-associated variables, for example underwater illuminance, may hold promise as cost-effective surrogates of turbidity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many water-quality monitoring programs aim to measure turbidity to help guide
effective management of waterways and catchments, yet distributing turbidity
sensors throughout networks is typically cost prohibitive. To this end, we
built and compared the ability of dynamic regression (ARIMA), long short-term
memory neural nets (LSTM), and generalized additive models (GAM) to forecast
stream turbidity one step ahead, using surrogate data from relatively low-cost
in-situ sensors and publicly available databases. We iteratively trialled
combinations of four surrogate covariates (rainfall, water level, air
temperature and total global solar exposure) selecting a final model for each
type that minimised the corrected Akaike Information Criterion.
Cross-validation using a rolling time-window indicated that ARIMA, which
included the rainfall and water-level covariates only, produced the most
accurate predictions, followed closely by GAM, which included all four
covariates. We constructed a meta-model, trained on time-series features of
turbidity, to take advantage of the strengths of each model over different time
points and predict the best model (that with the lowest forecast error one-step
prior) for each time step. The meta-model outperformed all other models,
indicating that this methodology can yield high accuracy and may be a viable
alternative to using measurements sourced directly from turbidity-sensors where
costs prohibit their deployment and maintenance, and when predicting turbidity
across the short term. Our findings also indicated that temperature and
light-associated variables, for example underwater illuminance, may hold
promise as cost-effective, high-frequency surrogates of turbidity, especially
when combined with other covariates, like rainfall, that are typically measured
at coarse levels of spatial resolution.
Related papers
- Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
We propose Distance-weighted Auto-regularized Neural network (DAN), a novel extreme-adaptive model for long-range forecasting of stremflow enhanced by polar representation learning.
On four real-life hydrologic streamflow datasets, we demonstrate that DAN significantly outperforms both state-of-the-art hydrologic time series prediction methods and general methods designed for long-term time series prediction.
arXiv Detail & Related papers (2023-12-14T09:16:01Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Training Normalizing Flows with the Precision-Recall Divergence [73.92251251511199]
We show that achieving a specified precision-recall trade-off corresponds to minimising -divergences from a family we call the em PR-divergences
We propose a novel generative model that is able to train a normalizing flow to minimise any -divergence, and in particular, achieve a given precision-recall trade-off.
arXiv Detail & Related papers (2023-02-01T17:46:47Z) - Differentiable, learnable, regionalized process-based models with
physical outputs can approach state-of-the-art hydrologic prediction accuracy [1.181206257787103]
We show that differentiable, learnable, process-based models (called delta models here) can approach the performance level of LSTM for the intensively-observed variable (streamflow) with regionalized parameterization.
We use a simple hydrologic model HBV as the backbone and use embedded neural networks, which can only be trained in a differentiable programming framework.
arXiv Detail & Related papers (2022-03-28T15:06:53Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Machine Learning for Postprocessing Ensemble Streamflow Forecasts [0.0]
We integrate dynamical modeling with machine learning to demonstrate the enhanced quality of streamflow forecasts at short-to medium-range (1 - 7 days)
We employ a Long Short-Term Memory (LSTM) neural network to correct forecast biases in raw ensemble streamflow forecasts obtained from dynamical modeling.
The verification results show that the LSTM can improve streamflow forecasts relative to climatological, temporal persistence, deterministic, and raw ensemble forecasts.
arXiv Detail & Related papers (2021-06-15T18:46:30Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods [24.190587751595455]
Weak supervision is a popular method for building machine learning models without relying on ground truth annotations.
Existing approaches use latent variable estimation to model the noisy sources.
We show that for a class of latent variable models highly applicable to weak supervision, we can find a closed-form solution to model parameters.
We use this insight to build FlyingSquid, a weak supervision framework that runs orders of magnitude faster than previous weak supervision approaches.
arXiv Detail & Related papers (2020-02-27T07:51:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.