論文の概要: SegViT: Semantic Segmentation with Plain Vision Transformers
- arxiv url: http://arxiv.org/abs/2210.05844v1
- Date: Wed, 12 Oct 2022 00:30:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 14:40:24.966927
- Title: SegViT: Semantic Segmentation with Plain Vision Transformers
- Title(参考訳): SegViT: プレーンビジョントランスを用いたセマンティックセグメンテーション
- Authors: Bowen Zhang and Zhi Tian and Quan Tang and Xiangxiang Chu and Xiaolin
Wei and Chunhua Shen and Yifan Liu
- Abstract要約: 意味的セグメンテーションのための平易な視覚変換器(ViT)の能力について検討する。
本研究では,学習可能なクラストークンの集合と空間特徴マップの類似性をセグメンテーションマスクに転送するATMモジュールを提案する。
実験の結果,ATMモジュールを用いたSegVitは,通常のViTバックボーンよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 91.50075506561598
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We explore the capability of plain Vision Transformers (ViTs) for semantic
segmentation and propose the SegVit. Previous ViT-based segmentation networks
usually learn a pixel-level representation from the output of the ViT.
Differently, we make use of the fundamental component -- attention mechanism,
to generate masks for semantic segmentation. Specifically, we propose the
Attention-to-Mask (ATM) module, in which the similarity maps between a set of
learnable class tokens and the spatial feature maps are transferred to the
segmentation masks. Experiments show that our proposed SegVit using the ATM
module outperforms its counterparts using the plain ViT backbone on the ADE20K
dataset and achieves new state-of-the-art performance on COCO-Stuff-10K and
PASCAL-Context datasets. Furthermore, to reduce the computational cost of the
ViT backbone, we propose query-based down-sampling (QD) and query-based
up-sampling (QU) to build a Shrunk structure. With the proposed Shrunk
structure, the model can save up to $40\%$ computations while maintaining
competitive performance.
- Abstract(参考訳): セマンティックセグメンテーションのためのプレーンビジョントランスフォーマー(ViT)の機能について検討し,SegVitを提案する。
従来のViTベースのセグメンテーションネットワークは通常、ViTの出力からピクセルレベルの表現を学ぶ。
別の方法では、基本的なコンポーネント -- 注意メカニズムを使用して、セマンティックセグメンテーションのためのマスクを生成します。
具体的には,学習可能なクラストークンの集合と空間特徴マップとの類似度マップをセグメンテーションマスクに転送するattention-to-mask(atm)モジュールを提案する。
実験の結果,ATMモジュールを用いたSegVitはADE20Kデータセット上の平易なViTバックボーンよりも優れており,COCO-Stuff-10KおよびPASCAL-Contextデータセット上で新たな最先端性能を実現することがわかった。
さらに,vitバックボーンの計算コストを低減するために,クエリベースのダウンサンプリング(qd)とクエリベースのアップサンプリング(qu)を提案する。
提案する縮小構造により、このモデルは競合性能を維持しながら最大$40\%$の計算を節約できる。
関連論文リスト
- Minimalist and High-Performance Semantic Segmentation with Plain Vision
Transformers [10.72362704573323]
トランス層に加えて,3$Times$3の畳み込みのみで構成されるモデルであるPlainSegを導入する。
また,階層的特徴の活用を可能にするPlainSeg-Hierを提案する。
論文 参考訳(メタデータ) (2023-10-19T14:01:40Z) - Sub-token ViT Embedding via Stochastic Resonance Transformers [51.12001699637727]
Vision Transformer (ViT) アーキテクチャは、画像を高次元のベクトル化トークンの集合として表現し、それぞれが長方形の非重複パッチに対応する。
我々は「確率共鳴」にインスパイアされた無訓練法を提案する。
結果として得られるSRT(Stochastic Resonance Transformer)は、元の表現のリッチな意味情報を保持するが、空間的トークン化の粗い効果を軽減し、より微細な空間領域に基盤を置いている。
論文 参考訳(メタデータ) (2023-10-06T01:53:27Z) - SegViTv2: Exploring Efficient and Continual Semantic Segmentation with
Plain Vision Transformers [76.13755422671822]
本稿では,エンコーダ・デコーダ・フレームワークを用いた意味的セグメンテーションのためのプレーンビジョン変換器(ViT)の能力について検討する。
Intention-to-Mask(atm)モジュールを導入し、平易なViTに有効な軽量デコーダを設計する。
我々のデコーダは、様々なViTバックボーンを使用して人気のあるデコーダUPerNetより優れ、計算コストの5%程度しか消費しない。
論文 参考訳(メタデータ) (2023-06-09T22:29:56Z) - Semantic Segmentation using Vision Transformers: A survey [0.0]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)はセマンティックセグメンテーションのためのアーキテクチャモデルを提供する。
ViTは画像分類に成功しており、画像のセグメンテーションや物体検出といった密集した予測タスクに直接適用することはできない。
この調査は、ベンチマークデータセットを使用してセマンティックセグメンテーション用に設計されたViTアーキテクチャのパフォーマンスをレビューし、比較することを目的としている。
論文 参考訳(メタデータ) (2023-05-05T04:11:00Z) - Global Context Vision Transformers [78.5346173956383]
我々は,コンピュータビジョンのパラメータと計算利用を向上する新しいアーキテクチャであるGC ViT(Global context vision transformer)を提案する。
本稿では,ViTにおける帰納バイアスの欠如に対処し,アーキテクチャにおける可溶性逆残差ブロックを改良して活用することを提案する。
提案したGC ViTは,画像分類,オブジェクト検出,セマンティックセマンティックセグメンテーションタスクにまたがる最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-06-20T18:42:44Z) - Task-Adaptive Feature Transformer with Semantic Enrichment for Few-Shot
Segmentation [21.276981570672064]
わずかながらの学習により、機械はいくつかのラベル付きサンプルを使用して新しいクラスを分類できる。
本稿では,既存のセグメンテーションネットワーク上に,数発のセグメンテーションを行うための学習可能なモジュールを提案する。
PASCAL-$5i$とCOCO-$20i$データセットの実験では、追加されたモジュールが既存のセグメンテーションの機能を拡張することに成功した。
論文 参考訳(メタデータ) (2022-02-14T06:16:26Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
セマンティックセグメンテーションのためのトランスフォーマーモデルであるSegmenterを紹介します。
最近のViT(Vision Transformer)上に構築し,セマンティックセグメンテーションに拡張する。
これは、挑戦的なADE20Kデータセット上でのアートの状態を上回り、Pascal ContextとCityscapesでオンパーを実行する。
論文 参考訳(メタデータ) (2021-05-12T13:01:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。