Deterioration Prediction using Time-Series of Three Vital Signs and
Current Clinical Features Amongst COVID-19 Patients
- URL: http://arxiv.org/abs/2210.05881v1
- Date: Wed, 12 Oct 2022 02:53:43 GMT
- Title: Deterioration Prediction using Time-Series of Three Vital Signs and
Current Clinical Features Amongst COVID-19 Patients
- Authors: Sarmad Mehrdad, Farah E. Shamout, Yao Wang, S. Farokh Atashzar
- Abstract summary: We develop a prognostic model that predicts if a patient will experience deterioration in the forthcoming 3-24 hours.
The model processes routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature.
We train and evaluate the model using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA.
- Score: 6.1594622252295474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unrecognized patient deterioration can lead to high morbidity and mortality.
Most existing deterioration prediction models require a large number of
clinical information, typically collected in hospital settings, such as medical
images or comprehensive laboratory tests. This is infeasible for telehealth
solutions and highlights a gap in deterioration prediction models that are
based on minimal data, which can be recorded at a large scale in any clinic,
nursing home, or even at the patient's home. In this study, we propose and
develop a prognostic model that predicts if a patient will experience
deterioration in the forthcoming 3-24 hours. The model sequentially processes
routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c)
temperature. The model is also provided with basic patient information,
including sex, age, vaccination status, vaccination date, and status of
obesity, hypertension, or diabetes. We train and evaluate the model using data
collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA.
The model achieves an area under the receiver operating characteristic curve
(AUROC) of 0.808-0.880 for 3-24 hour deterioration prediction. We also conduct
occlusion experiments to evaluate the importance of each input feature, where
the results reveal the significance of continuously monitoring the variations
of the vital signs. Our results show the prospect of accurate deterioration
forecast using a minimum feature set that can be relatively easily obtained
using wearable devices and self-reported patient information.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Multimodal spatiotemporal graph neural networks for improved prediction
of 30-day all-cause hospital readmission [4.609543591101764]
We propose a multimodal, modality-agnostic graph neural network (MM-STGNN) for prediction of 30-day all-cause hospital readmission.
MM-STGNN achieves AU of 0.79 on both primary and external datasets.
For subset populations of patients with heart and vascular disease, our model also outperforms baselines on predicting 30-day readmission.
arXiv Detail & Related papers (2022-04-14T05:50:07Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
We build an interpretable model for the early prediction of various adverse clinical events indicative of clinical deterioration.
The model is evaluated on two datasets and four clinical events.
Our model can be entirely automated without requiring any manually recorded features.
arXiv Detail & Related papers (2021-02-11T11:55:08Z) - COVID-19 Prognosis via Self-Supervised Representation Learning and
Multi-Image Prediction [32.91440827855392]
We consider the task of predicting two types of patient deterioration based on chest X-rays.
Due to the relative scarcity of COVID-19 patient data, existing solutions leverage supervised pretraining on related non-COVID images.
In this paper, we use self-supervised learning based on the momentum contrast (MoCo) method in the pretraining phase to learn more general image representations to use for downstream tasks.
arXiv Detail & Related papers (2021-01-13T07:03:17Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
We propose several deep learning models using the same features as the SAPS II score.
Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III.
arXiv Detail & Related papers (2020-12-11T16:27:04Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.