論文の概要: Travel the Same Path: A Novel TSP Solving Strategy
- arxiv url: http://arxiv.org/abs/2210.05906v1
- Date: Wed, 12 Oct 2022 03:56:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 13:26:04.401021
- Title: Travel the Same Path: A Novel TSP Solving Strategy
- Title(参考訳): 同じ道を旅する: 新しいTSP解決戦略
- Authors: Pingbang Hu
- Abstract要約: 我々は、必要に応じて適切な選択を行う決定論的アルゴリズムを支援する模倣学習フレームワークについて検討する。
我々は、模倣学習フレームワークの下で訓練されたグラフニューラルネットワークの強力な一般化能力を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide a novel strategy for solving Traveling Salesman
Problem, which is a famous combinatorial optimization problem studied intensely
in the TCS community. In particular, we consider the imitation learning
framework, which helps a deterministic algorithm making good choices whenever
it needs to, resulting in a speed up while maintaining the exactness of the
solution without suffering from the unpredictability and a potential large
deviation.
Furthermore, we demonstrate a strong generalization ability of a graph neural
network trained under the imitation learning framework. Specifically, the model
is capable of solving a large instance of TSP faster than the baseline while
has only seen small TSP instances when training.
- Abstract(参考訳): 本稿では,TCS コミュニティで盛んに研究されている組合せ最適化問題であるトラベリングセールスマン問題を解決するための新しい戦略を提案する。
特に,予測不可能性や潜在的な大きな偏差に悩まされることなく,解の正確性を維持しながら,決定論的アルゴリズムが適切な選択を行うのに役立つ模倣学習フレームワークについて考察する。
さらに、模倣学習フレームワークの下で訓練されたグラフニューラルネットワークの強力な一般化能力を示す。
具体的には、トレーニング時に小さなTSPインスタンスしか見られないが、ベースラインよりも高速にTSPの大規模なインスタンスを解決することができる。
関連論文リスト
- Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Unsupervised Training for Neural TSP Solver [2.9398911304923447]
本稿では,トラベリングセールスマン問題を解決するための教師なし学習手法を提案する。
我々は、TSPの整数線型プログラムを緩和して、正しいインスタンスラベルを必要としない損失関数を構築する。
私たちのアプローチは、強化学習よりも安定しており、トレーニングも簡単です。
論文 参考訳(メタデータ) (2022-07-27T17:33:29Z) - Combining Reinforcement Learning and Optimal Transport for the Traveling
Salesman Problem [18.735056206844202]
我々は,従来の自己回帰的アプローチよりもはるかに高速に,監督や推論なしに学習できるモデルを構築することができることを示す。
また、ディープラーニングモデルに最適なトランスポートアルゴリズムを組み込むことで、エンドツーエンドのトレーニング中に割り当て制約を強制する利点を実証的に評価する。
論文 参考訳(メタデータ) (2022-03-02T07:21:56Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
本稿では,ディープニューラルネットワークのトレーニング問題について検討し,最適化環境に隠された凸性を明らかにするための解析的アプローチを提案する。
我々は、標準のディープ・ネットワークとResNetを特別なケースとして含む、ディープ・パラレルなReLUネットワークアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-10-18T18:00:36Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - Learning to Sparsify Travelling Salesman Problem Instances [0.5985204759362747]
プルーニングマシンラーニングを前処理のステップとして使用し、旅行セールスマンの問題をスパーシャライズするために正確なプログラミングアプローチを行います。
私たちの学習アプローチは、非常に少ないトレーニングデータを必要とし、数学的分析に適応可能です。
論文 参考訳(メタデータ) (2021-04-19T14:35:14Z) - Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances [55.64521598173897]
本稿では,旅行セールスマン問題(TSP)のヒートマップ構築に繰り返し使用可能な,小規模モデルのトレーニングを試みる。
ヒートマップは強化学習アプローチ(モンテカルロツリーサーチ)に供給され、高品質のソリューションの検索を案内します。
実験結果によると、この新しいアプローチは、既存の機械学習ベースのTSPアルゴリズムを明らかに上回る。
論文 参考訳(メタデータ) (2020-12-19T11:06:30Z) - Learning to Optimise General TSP Instances [2.6782615615913348]
トラベリングセールスマン問題(TSP)は古典的な最適化問題である。
ディープラーニングはメタラーニングに成功し、過去の問題解決活動が将来のインスタンスを最適化する方法を学ぶのに役立つ。
本稿では,多種多様なTSP問題を解くための学習に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-23T07:37:16Z) - Reinforcement Learning for Variable Selection in a Branch and Bound
Algorithm [0.10499611180329801]
現実世界のインスタンスのパターンを活用して、与えられた問題に最適化された新しいブランチ戦略をスクラッチから学習します。
本稿では,この課題に特化して設計された新しい強化学習手法であるFMSTSを提案する。
論文 参考訳(メタデータ) (2020-05-20T13:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。