Robust Models are less Over-Confident
- URL: http://arxiv.org/abs/2210.05938v1
- Date: Wed, 12 Oct 2022 06:14:55 GMT
- Title: Robust Models are less Over-Confident
- Authors: Julia Grabinski, Paul Gavrikov, Janis Keuper, Margret Keuper
- Abstract summary: adversarial training (AT) aims to achieve robustness against such attacks.
We empirically analyze a variety of adversarially trained models that achieve high robust accuracies.
AT has an interesting side-effect: it leads to models that are significantly less overconfident with their decisions.
- Score: 10.42820615166362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of convolutional neural networks (CNNs) in many academic
benchmarks for computer vision tasks, their application in the real-world is
still facing fundamental challenges. One of these open problems is the inherent
lack of robustness, unveiled by the striking effectiveness of adversarial
attacks. Current attack methods are able to manipulate the network's prediction
by adding specific but small amounts of noise to the input. In turn,
adversarial training (AT) aims to achieve robustness against such attacks and
ideally a better model generalization ability by including adversarial samples
in the trainingset. However, an in-depth analysis of the resulting robust
models beyond adversarial robustness is still pending. In this paper, we
empirically analyze a variety of adversarially trained models that achieve high
robust accuracies when facing state-of-the-art attacks and we show that AT has
an interesting side-effect: it leads to models that are significantly less
overconfident with their decisions, even on clean data than non-robust models.
Further, our analysis of robust models shows that not only AT but also the
model's building blocks (like activation functions and pooling) have a strong
influence on the models' prediction confidences. Data & Project website:
https://github.com/GeJulia/robustness_confidences_evaluation
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - On Evaluating the Adversarial Robustness of Semantic Segmentation Models [0.0]
A number of adversarial training approaches have been proposed as a defense against adversarial perturbation.
We show for the first time that a number of models in previous work that are claimed to be robust are in fact not robust at all.
We then evaluate simple adversarial training algorithms that produce reasonably robust models even under our set of strong attacks.
arXiv Detail & Related papers (2023-06-25T11:45:08Z) - Semantic Image Attack for Visual Model Diagnosis [80.36063332820568]
In practice, metric analysis on a specific train and test dataset does not guarantee reliable or fair ML models.
This paper proposes Semantic Image Attack (SIA), a method based on the adversarial attack that provides semantic adversarial images.
arXiv Detail & Related papers (2023-03-23T03:13:04Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
This paper investigates the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
We show that while the ResNet-18 model trained on DWT spectrograms achieves a high recognition accuracy, attacking this model is relatively more costly for the adversary.
arXiv Detail & Related papers (2022-04-14T15:14:08Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
Adversarial training is the strongest strategy against various adversarial attacks among all sorts of defense methods.
Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space.
We devise a simple but powerful emphSelf-Ensemble Adversarial Training (SEAT) method for yielding a robust classifier by averaging weights of history models.
arXiv Detail & Related papers (2022-03-18T01:12:18Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - Black-box Adversarial Attacks on Network-wide Multi-step Traffic State
Prediction Models [4.353029347463806]
We propose an adversarial attack framework by treating the prediction model as a black-box.
The adversary can oracle the prediction model with any input and obtain corresponding output.
To test the attack effectiveness, two state of the art, graph neural network-based models (GCGRNN and DCRNN) are examined.
arXiv Detail & Related papers (2021-10-17T03:45:35Z) - Voting based ensemble improves robustness of defensive models [82.70303474487105]
We study whether it is possible to create an ensemble to further improve robustness.
By ensembling several state-of-the-art pre-trained defense models, our method can achieve a 59.8% robust accuracy.
arXiv Detail & Related papers (2020-11-28T00:08:45Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - RAB: Provable Robustness Against Backdoor Attacks [20.702977915926787]
We focus on certifying the machine learning model robustness against general threat models, especially backdoor attacks.
We propose the first robust training process, RAB, to smooth the trained model and certify its robustness against backdoor attacks.
We conduct comprehensive experiments for different machine learning (ML) models and provide the first benchmark for certified robustness against backdoor attacks.
arXiv Detail & Related papers (2020-03-19T17:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.