Voting based ensemble improves robustness of defensive models
- URL: http://arxiv.org/abs/2011.14031v1
- Date: Sat, 28 Nov 2020 00:08:45 GMT
- Title: Voting based ensemble improves robustness of defensive models
- Authors: Devvrit, Minhao Cheng, Cho-Jui Hsieh, Inderjit Dhillon
- Abstract summary: We study whether it is possible to create an ensemble to further improve robustness.
By ensembling several state-of-the-art pre-trained defense models, our method can achieve a 59.8% robust accuracy.
- Score: 82.70303474487105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing robust models against adversarial perturbations has been an active
area of research and many algorithms have been proposed to train individual
robust models. Taking these pretrained robust models, we aim to study whether
it is possible to create an ensemble to further improve robustness. Several
previous attempts tackled this problem by ensembling the soft-label prediction
and have been proved vulnerable based on the latest attack methods. In this
paper, we show that if the robust training loss is diverse enough, a simple
hard-label based voting ensemble can boost the robust error over each
individual model. Furthermore, given a pool of robust models, we develop a
principled way to select which models to ensemble. Finally, to verify the
improved robustness, we conduct extensive experiments to study how to attack a
voting-based ensemble and develop several new white-box attacks. On CIFAR-10
dataset, by ensembling several state-of-the-art pre-trained defense models, our
method can achieve a 59.8% robust accuracy, outperforming all the existing
defensive models without using additional data.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
We propose a novel two-stage training strategy termed Step-Adaptive Training.
In the initial stage, a base denoising model is trained to encompass all timesteps.
We partition the timesteps into distinct groups, fine-tuning the model within each group to achieve specialized denoising capabilities.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
Adversarial training is the strongest strategy against various adversarial attacks among all sorts of defense methods.
Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space.
We devise a simple but powerful emphSelf-Ensemble Adversarial Training (SEAT) method for yielding a robust classifier by averaging weights of history models.
arXiv Detail & Related papers (2022-03-18T01:12:18Z) - Mutual Adversarial Training: Learning together is better than going
alone [82.78852509965547]
We study how interactions among models affect robustness via knowledge distillation.
We propose mutual adversarial training (MAT) in which multiple models are trained together.
MAT can effectively improve model robustness and outperform state-of-the-art methods under white-box attacks.
arXiv Detail & Related papers (2021-12-09T15:59:42Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
Adversarial training is one of the most effective approaches to improve model robustness against adversarial examples.
Previous works mainly focus on the overall robustness of the model, and the in-depth analysis on the role of each class involved in adversarial training is still missing.
We provide a detailed diagnosis of adversarial training on six benchmark datasets, i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet.
We observe that the stronger attack methods in adversarial learning achieve performance improvement mainly from a more successful attack on the vulnerable classes.
arXiv Detail & Related papers (2021-05-29T07:28:35Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
adversarial examples have been long considered a real threat to machine learning models.
We propose an alternative deployment-based defense paradigm that goes beyond the traditional white-box and black-box threat models.
arXiv Detail & Related papers (2021-02-09T20:07:13Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
We study different ways of creating ensembles from pre-trained models.
We show that the nature of pre-training itself is a performant source of diversity.
We propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset.
arXiv Detail & Related papers (2020-10-14T07:59:00Z) - DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of
Ensembles [20.46399318111058]
Adversarial attacks can mislead CNN models with small perturbations, which can effectively transfer between different models trained on the same dataset.
We propose DVERGE, which isolates the adversarial vulnerability in each sub-model by distilling non-robust features.
The novel diversity metric and training procedure enables DVERGE to achieve higher robustness against transfer attacks.
arXiv Detail & Related papers (2020-09-30T14:57:35Z) - Provably robust deep generative models [1.52292571922932]
We propose a method for training provably robust generative models, specifically a provably robust version of the variational auto-encoder (VAE)
We show that it is able to produce generative models that are substantially more robust to adversarial attacks.
arXiv Detail & Related papers (2020-04-22T14:47:41Z) - Revisiting Ensembles in an Adversarial Context: Improving Natural
Accuracy [5.482532589225552]
There is still a significant gap in natural accuracy between robust and non-robust models.
We consider a number of ensemble methods designed to mitigate this performance difference.
We consider two schemes, one that combines predictions from several randomly robust models, and the other that fuses features from robust and standard models.
arXiv Detail & Related papers (2020-02-26T15:45:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.