Identifiability Analysis of Linear ODE Systems with Hidden Confounders
- URL: http://arxiv.org/abs/2410.21917v2
- Date: Wed, 30 Oct 2024 05:46:38 GMT
- Title: Identifiability Analysis of Linear ODE Systems with Hidden Confounders
- Authors: Yuanyuan Wang, Biwei Huang, Wei Huang, Xi Geng, Mingming Gong,
- Abstract summary: This paper presents a systematic analysis of identifiability in linear ODE systems incorporating hidden confounders.
In the first case, latent confounders exhibit no causal relationships, yet their evolution adheres to specific forms.
Subsequently, we extend this analysis to encompass scenarios where hidden confounders exhibit causal dependencies.
- Score: 45.14890063421295
- License:
- Abstract: The identifiability analysis of linear Ordinary Differential Equation (ODE) systems is a necessary prerequisite for making reliable causal inferences about these systems. While identifiability has been well studied in scenarios where the system is fully observable, the conditions for identifiability remain unexplored when latent variables interact with the system. This paper aims to address this gap by presenting a systematic analysis of identifiability in linear ODE systems incorporating hidden confounders. Specifically, we investigate two cases of such systems. In the first case, latent confounders exhibit no causal relationships, yet their evolution adheres to specific functional forms, such as polynomial functions of time $t$. Subsequently, we extend this analysis to encompass scenarios where hidden confounders exhibit causal dependencies, with the causal structure of latent variables described by a Directed Acyclic Graph (DAG). The second case represents a more intricate variation of the first case, prompting a more comprehensive identifiability analysis. Accordingly, we conduct detailed identifiability analyses of the second system under various observation conditions, including both continuous and discrete observations from single or multiple trajectories. To validate our theoretical results, we perform a series of simulations, which support and substantiate our findings.
Related papers
- Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems.
By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders.
This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
arXiv Detail & Related papers (2024-10-25T10:57:35Z) - An Interventional Perspective on Identifiability in Gaussian LTI Systems
with Independent Component Analysis [44.892642197610215]
We show that in Gaussian Linear Time-Invariant (LTI) systems, the system parameters can be identified by introducing diverse intervention signals.
We show that Hidden Markov Models, in general, and (Gaussian) LTI systems, fulfil a generalization of the Causal de Finetti theorem with continuous parameters.
arXiv Detail & Related papers (2023-11-29T19:51:35Z) - Data-Driven Observability Analysis for Nonlinear Stochastic Systems [5.4511976387114895]
Distinguishability and observability are key properties of dynamical systems.
We show that both concepts are equivalent for a class of systems that includes linear systems.
We propose a statistical test to determine a threshold above which two states can be considered distinguishable with high confidence.
arXiv Detail & Related papers (2023-02-23T12:51:03Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Path Signature Area-Based Causal Discovery in Coupled Time Series [0.0]
We propose the application of confidence sequences to analyze the significance of the magnitude of the signed area between two variables.
This approach provides a new way to define the confidence of a causal link existing between two time series.
arXiv Detail & Related papers (2021-10-23T19:57:22Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
We propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events.
A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios.
We show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy.
arXiv Detail & Related papers (2020-02-03T17:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.