Collective atom-cavity coupling and non-linear dynamics with atoms with
multilevel ground states
- URL: http://arxiv.org/abs/2210.06085v1
- Date: Wed, 12 Oct 2022 11:03:04 GMT
- Title: Collective atom-cavity coupling and non-linear dynamics with atoms with
multilevel ground states
- Authors: Elmer Suarez, Federico Carollo, Igor Lesanovsky, Beatriz Olmos,
Philippe W. Courteille, Sebastian Slama
- Abstract summary: We investigate experimentally and theoretically the collective coupling between atoms with multilevel ground state manifold and an optical cavity mode.
Our results show that the multilevel structure of electronic ground states can significantly alter the relaxation behavior in atom-cavity settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate experimentally and theoretically the collective coupling
between atoms with multilevel ground state manifolds and an optical cavity
mode. In our setup the cavity field optically pumps populations among the
ground states. The ensuing dynamics can be conveniently described by means of
an effective dynamical atom-cavity coupling strength that depends on the
occupation of the individual states and their coupling strengths with the
cavity mode. This leads to a dynamical backaction of the atomic populations on
the atom-cavity coupling strength which results in a non-exponential relaxation
dynamics. We experimentally observe this effect with laser-cooled $^{87}$Rb
atoms, for which we monitor the collective normal-mode splitting in real time.
Our results show that the multilevel structure of electronic ground states can
significantly alter the relaxation behavior in atom-cavity settings as compared
to ensembles of two-level atoms.
Related papers
- Continuous cavity-QED with an atomic beam [4.318157997343946]
Atoms coupled to cavities provide an exciting playground for the study of fundamental interactions of atoms mediated through a common channel.
Many of the applications of cavity-QED and cold-atom experiments more broadly, suffer from limitations caused by the transient nature of an atomic loading cycle.
We present a machine designed to produce a continuous flux of collimated atoms that traverse an optical cavity.
arXiv Detail & Related papers (2024-07-26T11:13:53Z) - Coupled states of cold 174-Yb atoms in a high-finesse cavity [0.0]
We experimentally and theoretically study the formation of dressed states emerging from strong collective coupling of the narrow intercombination line of Yb atoms to a single mode of a high-finesse optical cavity.
arXiv Detail & Related papers (2024-04-18T13:27:42Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Generation and distribution of atomic entanglement in coupled-cavity
arrays [0.0]
We study the dynamics of entanglement in a 1D coupled-cavity array, each cavity containing a two-level atom, via the Jaynes-Cummings-Hubbard (JCH) Hamiltonian in the single-excitation sector.
Our work offers a comprehensive account over the machinery of the single-excitation JCH Hamiltonian as well as contributes to the design of hybrid light-matter quantum networks.
arXiv Detail & Related papers (2020-05-30T15:11:12Z) - Ionic polaron in a Bose-Einstein condensate [0.0]
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects.
We show that even in a relatively simple setup the competition of length scales gives rise to a highly correlated state.
Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
arXiv Detail & Related papers (2020-05-25T11:10:34Z) - Collective Dissipative Molecule Formation in a Cavity [0.0]
We propose a mechanism to realize high-yield molecular formation from ultracold atoms.
We demonstrate that the molecular yield can be improved by simply increasing the number of atoms.
arXiv Detail & Related papers (2020-02-13T16:25:30Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.