Deterministic single-atom source of quasi-superradiant $N$-photon pulses
- URL: http://arxiv.org/abs/2012.00246v1
- Date: Tue, 1 Dec 2020 03:55:27 GMT
- Title: Deterministic single-atom source of quasi-superradiant $N$-photon pulses
- Authors: Caspar Groiseau, Alexander E. J. Elliott, Stuart J. Masson, Scott
Parkins
- Abstract summary: Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a single-atom, cavity quantum electrodynamics system, compatible
with recently demonstrated, fiber-integrated micro- and nano-cavity setups, for
the on-demand production of optical number-state, $0N$-state, and
binomial-code-state pulses. The scheme makes use of Raman transitions within an
entire atomic ground-state hyperfine level and operates with laser and cavity
fields detuned from the atomic transition by much more than the excited-state
hyperfine splitting. This enables reduction of the dynamics to that of a
simple, cavity-damped Tavis-Cummings model with the collective spin determined
by the total angular momentum of the ground hyperfine level.
Related papers
- Ultra-high strained diamond spin register with coherent optical link [45.40010446596688]
Solid-state spin defects, such as color centers in diamond, are among the most promising candidates for scalable and integrated quantum technologies.
We show that leveraging an ultra-high strained silicon-vacancy center inside a nanodiamond allows us to coherently and efficiently control its electron spin, while mitigating phonon-induced dephasing at liquid helium temperature.
Our work paves the way for future integration of quantum network registers into conventional, well-established photonics and hybrid quantum communication systems.
arXiv Detail & Related papers (2024-09-19T10:46:24Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Correlations and linewidth of the atomic beam continuous superradiant
laser [0.0]
A beam of atoms crosses the mode of a high-finesse FabryPerot cavity, and collectively emits light into the cavity mode.
We focus on the case of weak single atom - cavity cooperativity, and highlight the relevant regime where decoherence due to the finite transit time dominates over spontaneous emission.
arXiv Detail & Related papers (2022-10-11T14:06:39Z) - Engineering random spin models with atoms in a high-finesse cavity [8.787025970442755]
We realise an all-to-all interacting, disordered spin system by subjecting an atomic cloud in a cavity to a controllable light shift.
By probing the low-energy excitations of the system, we explore the competition of interactions with disorder across a broad parameter range.
Results present significant steps towards freely programmable cavity-mediated interactions for the design of arbitrary spin Hamiltonians.
arXiv Detail & Related papers (2022-08-19T16:13:58Z) - Bosonic pair production and squeezing for optical phase measurements in
long-lived dipoles coupled to a cavity [0.0]
Entanglement between atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast.
We propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles)
Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks.
arXiv Detail & Related papers (2022-04-27T17:39:08Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dynamics of a spin qubit in an optical dipole trap [0.0]
We present a theoretical investigation of coherent dynamics of a spin qubit encoded in hyperfine sublevels of an alkali-metal atom in a far off-resonant optical dipole trap.
We focus on various dephasing processes such as the residual motion of the atom, fluctuations of the trapping field and its incoherent scattering.
arXiv Detail & Related papers (2021-05-25T11:01:55Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.