Enhanced dark-state sideband cooling in trapped atoms via
photon-mediated dipole-dipole interactions
- URL: http://arxiv.org/abs/2210.06198v1
- Date: Wed, 12 Oct 2022 13:33:20 GMT
- Title: Enhanced dark-state sideband cooling in trapped atoms via
photon-mediated dipole-dipole interactions
- Authors: Chung-Hsien Wang, Yi-Cheng Wang, Chi-Chih Chen, Chun-Che Wang, and H.
H. Jen
- Abstract summary: We present an enhanced dark-state sideband cooling in trapped atoms utilizing photon-mediated dipole-dipole interactions among them.
By placing the atoms at the magic interparticle distances, we manifest an outperformed cooling behavior in the target atom.
Our results provide insights to subrecoil cooling of atoms with collective and light-induced long-range dipole-dipole interactions, and pave the way toward implementing genuine quantum operations in multiple quantum registers.
- Score: 4.915587669065746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resolved sideband cooling provides a crucial step in subrecoil cooling the
trapped atoms toward their motional ground state, which is essential in
atom-based quantum technologies. Here we present an enhanced dark-state
sideband cooling in trapped atoms utilizing photon-mediated dipole-dipole
interactions among them. By placing the atoms at the magic interparticle
distances, we manifest an outperformed cooling behavior in the target atom,
which surpasses the limit that a single atom permits. We further investigate
various atomic configurations in a multiatom setup with a laser detuning and
different light polarization angles, where multiple magic spacings can be
identified and a moderate improvement in cooling performance is predicted as
the number of atoms increases. Our results provide insights to subrecoil
cooling of atoms with collective and light-induced long-range dipole-dipole
interactions, and pave the way toward implementing genuine quantum operations
in multiple quantum registers.
Related papers
- Collectively enhanced ground-state cooling in subwavelength atomic arrays [0.0]
We present a sideband cooling scheme for atoms trapped in subwavelength arrays.
We derive an effective master equation for the atomic motion by adiabatically eliminating the internal degrees of freedom of the atoms.
This approach could be utilized for future quantum technologies based on dense ensembles of emitters.
arXiv Detail & Related papers (2024-05-28T18:00:05Z) - Enhancing strength and range of atom-atom interaction in a
coupled-cavity array via parametric drives [0.0]
Coherent long-range interactions between atoms are a prerequisite for numerous applications in the field of quantum information science.
We present an appealing method to dramatically enhance the long-range atom-atom interaction mediated by a coupled-cavity array.
arXiv Detail & Related papers (2023-05-14T11:23:38Z) - Motional ground-state cooling of single atoms in state-dependent optical
tweezers [0.1631115063641726]
We study a novel laser cooling scheme for single atoms in optical tweezers.
The scheme exploits sequential addressing of red sideband transitions via frequency chirping of the cooling light.
It induces light-assisted collisions, which are key to the assembly of large atom arrays.
arXiv Detail & Related papers (2023-02-08T08:33:19Z) - Superior dark-state cooling via nonreciprocal couplings in trapped atoms [4.915587669065746]
Cooling trapped atoms toward their motional ground states is key to applications of quantum simulation and quantum computation.
We present an intriguing dark-state cooling scheme in $Lambda$-type three-level structure, which is shown superior than the conventional electromagnetically-induced-transparency cooling in a single atom.
arXiv Detail & Related papers (2022-06-29T05:43:22Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.