論文の概要: Zero-Shot On-the-Fly Event Schema Induction
- arxiv url: http://arxiv.org/abs/2210.06254v2
- Date: Mon, 27 Mar 2023 14:11:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 02:16:40.465486
- Title: Zero-Shot On-the-Fly Event Schema Induction
- Title(参考訳): zero-shot on-the-flyイベントスキーマインダクション
- Authors: Rotem Dror, Haoyu Wang, and Dan Roth
- Abstract要約: 本稿では,大規模な言語モデルを用いて,高レベルなイベント定義,特定のイベント,引数,それらの関係を予測・付与するソースドキュメントを生成する手法を提案する。
我々のモデルを用いて、任意のトピックに関する完全なスキーマを、手動のデータ収集、すなわちゼロショットの方法で、オンザフライで生成することができる。
- 参考スコア(独自算出の注目度): 61.91468909200566
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: What are the events involved in a pandemic outbreak? What steps should be
taken when planning a wedding? The answers to these questions can be found by
collecting many documents on the complex event of interest, extracting relevant
information, and analyzing it. We present a new approach in which large
language models are utilized to generate source documents that allow
predicting, given a high-level event definition, the specific events,
arguments, and relations between them to construct a schema that describes the
complex event in its entirety. Using our model, complete schemas on any topic
can be generated on-the-fly without any manual data collection, i.e., in a
zero-shot manner. Moreover, we develop efficient methods to extract pertinent
information from texts and demonstrate in a series of experiments that these
schemas are considered to be more complete than human-curated ones in the
majority of examined scenarios. Finally, we show that this framework is
comparable in performance with previous supervised schema induction methods
that rely on collecting real texts while being more general and flexible
without the need for a predefined ontology.
- Abstract(参考訳): パンデミックの流行にかかわる出来事は何ですか。
結婚式の計画にはどんなステップを踏むべきか?
これらの質問に対する回答は、複雑な関心事に関する多くの文書を収集し、関連する情報を抽出し、分析することで得られる。
本稿では,大規模言語モデルを用いて高レベルのイベント定義,特定のイベント,引数,それらの関係を予測し,複雑なイベント全体を記述したスキーマを構築することのできる,ソースドキュメントを生成する手法を提案する。
当社のモデルでは,任意のトピックに関する完全なスキーマを,手作業によるデータ収集を必要とせずに,オンザフライで生成することが可能です。
さらに,テキストから関連する情報を抽出するための効率的な手法を開発し,検証されたシナリオの大部分において,これらのスキーマが人間が作成したものよりも完全であることを示す一連の実験を行った。
最後に、このフレームワークは、事前定義されたオントロジーを必要とせずに、より汎用的で柔軟な実際のテキストの収集に依存する、以前の教師付きスキーマインダクションメソッドと同等の性能を示す。
関連論文リスト
- Write Summary Step-by-Step: A Pilot Study of Stepwise Summarization [48.57273563299046]
本稿では,新たな文書が提案されるたびに追加の要約を生成するステップワイド要約の課題を提案する。
追加された要約は、新たに追加されたコンテンツを要約するだけでなく、以前の要約と一貫性を持たなければならない。
SSGは,自動計測と人的評価の両面から,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-06-08T05:37:26Z) - Prompt-based Graph Model for Joint Liberal Event Extraction and Event Schema Induction [1.3154296174423619]
イベントは、エンティティの状態の変化を記述する、スピーチとテキストの不可欠なコンポーネントである。
イベント抽出タスクは、イベントを特定して分類し、イベントスキーマに従って参加者を見つけることを目的としている。
研究者らは、イベント抽出とイベントスキーマの同時発見を目的とした、リベラルイベント抽出(LEE)を提案する。
論文 参考訳(メタデータ) (2024-03-19T07:56:42Z) - Drafting Event Schemas using Language Models [48.81285141287434]
複雑なイベントを記述するためにこのようなスキーマを作成するプロセスに注目します。
私たちの焦点は、十分な多様性と重要なイベントのリコールを達成できるかどうかにあります。
大規模言語モデルは、2つの異なるデータセットから取り出されたスキーマに対して適度なリコールを達成することができることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:57:04Z) - TAGPRIME: A Unified Framework for Relational Structure Extraction [71.88926365652034]
TAGPRIMEは、与えられた条件に関する情報を入力テキストに追加するシーケンスタグ付けモデルである。
事前学習された言語モデルにおける自己認識機構により、プライミングワードは、出力された文脈化された表現に、与えられた条件に関するより多くの情報を含む。
5つの異なる言語にまたがる10のデータセットをカバーする3つのタスクに関する大規模な実験と分析は、TAGPRIMEの汎用性と有効性を示している。
論文 参考訳(メタデータ) (2022-05-25T08:57:46Z) - Unsupervised Summarization with Customized Granularities [76.26899748972423]
本稿では,最初の教師なし多粒度要約フレームワークであるGranuSumを提案する。
異なる数のイベントを入力することで、GranuSumは教師なしの方法で複数の粒度のサマリーを生成することができる。
論文 参考訳(メタデータ) (2022-01-29T05:56:35Z) - Aspect-Oriented Summarization through Query-Focused Extraction [23.62412515574206]
実際のユーザのニーズは、特定のクエリではなく、ユーザが興味を持っているデータセットの幅広いトピックという側面に、より深く浸透することが多い。
抽出クエリに焦点を絞った学習手法をベンチマークし、モデルを訓練するための対照的な拡張手法を提案する。
我々は2つのアスペクト指向データセットを評価し、この手法が一般的な要約システムよりも焦点を絞った要約を得られることを発見した。
論文 参考訳(メタデータ) (2021-10-15T18:06:21Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。