論文の概要: Task Compass: Scaling Multi-task Pre-training with Task Prefix
- arxiv url: http://arxiv.org/abs/2210.06277v1
- Date: Wed, 12 Oct 2022 15:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 12:06:11.505489
- Title: Task Compass: Scaling Multi-task Pre-training with Task Prefix
- Title(参考訳): Task Compass: Task Prefixによるマルチタスク事前トレーニングのスケーリング
- Authors: Zhuosheng Zhang, Shuohang Wang, Yichong Xu, Yuwei Fang, Wenhao Yu,
Yang Liu, Hai Zhao, Chenguang Zhu and Michael Zeng
- Abstract要約: 既存の研究では、大規模教師付きタスクによるマルチタスク学習がタスク間の負の効果に悩まされていることが示されている。
タスク間の関係を探索するために,タスクプレフィックスガイド付きマルチタスク事前学習フレームワークを提案する。
我々のモデルは、幅広いタスクの強力な基盤バックボーンとして機能するだけでなく、タスク関係を分析するための探索ツールとしても実現可能である。
- 参考スコア(独自算出の注目度): 122.49242976184617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging task-aware annotated data as supervised signals to assist with
self-supervised learning on large-scale unlabeled data has become a new trend
in pre-training language models. Existing studies show that multi-task learning
with large-scale supervised tasks suffers from negative effects across tasks.
To tackle the challenge, we propose a task prefix guided multi-task
pre-training framework to explore the relationships among tasks. We conduct
extensive experiments on 40 datasets, which show that our model can not only
serve as the strong foundation backbone for a wide range of tasks but also be
feasible as a probing tool for analyzing task relationships. The task
relationships reflected by the prefixes align transfer learning performance
between tasks. They also suggest directions for data augmentation with
complementary tasks, which help our model achieve human-parity results on
commonsense reasoning leaderboards. Code is available at
https://github.com/cooelf/CompassMTL
- Abstract(参考訳): タスク対応アノテートデータを教師付き信号として活用して,大規模未ラベルデータの自己教師型学習を支援することは,事前学習言語モデルにおいて新たなトレンドとなっている。
既存の研究では、大規模教師付きタスクによるマルチタスク学習がタスク間の負の効果に悩まされていることが示されている。
そこで本研究では,タスク間の関係を探究するタスクプレフィックス誘導マルチタスク事前学習フレームワークを提案する。
我々は40のデータセットに対して広範な実験を行い、我々のモデルは幅広いタスクの強力な基盤バックボーンとして機能するだけでなく、タスク関係を分析するための探索ツールとしても実現可能であることを示した。
プレフィックスが反映するタスク関係は、タスク間の転送学習性能を調整する。
また、補完的なタスクによるデータ拡張の方向性も提案しており、このモデルがコモンセンス推論のリーダーボード上での人間のパリティ結果の達成に役立ちます。
コードはhttps://github.com/cooelf/CompassMTLで入手できる。
関連論文リスト
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
マルチタスク学習は、複数の関連するソースタスクで強化することで、低リソースのターゲットタスクのトレーニングに広く使用されている。
マルチタスク学習における重要な問題は、ターゲットタスクに利益をもたらすソースタスクのサブセットを特定することである。
本稿では,サロゲートモデルを用いてこの問題に対処する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:16:11Z) - TaskMix: Data Augmentation for Meta-Learning of Spoken Intent
Understanding [0.0]
本稿では,タスクの多様性が低い場合のオーバーフィッティングという問題を,最先端のデータ拡張手法により悪化させることを示す。
本稿では,既存のタスクを線形に補間することで,新しいタスクを合成する簡単なTaskMixを提案する。
TaskMixはベースラインを上回り、タスクの多様性が低い場合の過度な適合を軽減し、高い場合でも性能が低下しないことを示す。
論文 参考訳(メタデータ) (2022-09-26T00:37:40Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Learning Multiple Dense Prediction Tasks from Partially Annotated Data [41.821234589075445]
マルチタスク部分教師付き学習(multi-task part-supervised learning)と呼ぶ部分注釈付きデータ上で,複数の密接な予測タスクを共同で学習する。
本稿では,タスク関係を利用したマルチタスク学習手法を提案する。
提案手法は,既存の半教師付き学習手法や関連手法を3つの標準ベンチマークで上回り,非ラベルなタスクで効果的に活用できることを厳密に実証する。
論文 参考訳(メタデータ) (2021-11-29T19:03:12Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
マルチタスク学習モデルにおいて、どのタスクを一緒にトレーニングすべきかを選択するアプローチを提案する。
本手法は,全タスクを協調学習し,タスクの勾配が他のタスクの損失に影響を及ぼす影響を定量化する。
論文 参考訳(メタデータ) (2021-09-10T02:01:43Z) - Temporally Correlated Task Scheduling for Sequence Learning [143.70523777803723]
多くのアプリケーションにおいて、シーケンス学習タスクは通常、複数の時間的に相関した補助タスクと関連付けられている。
シーケンス学習に学習可能なスケジューラを導入し、トレーニングのための補助的なタスクを適応的に選択できる。
本手法は,同時翻訳とストックトレンド予測の性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-07-10T10:28:54Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
すべてのタスクに対して共有モジュール,各タスクに対して別個の出力モジュールを備えたアーキテクチャについて検討する。
タスクデータ間の不一致が負の転送(または性能の低下)を引き起こし、ポジティブな転送に十分な条件を提供することを示す。
理論的洞察から着想を得た結果,タスクの埋め込みレイヤの整合がマルチタスクトレーニングやトランスファー学習のパフォーマンス向上につながることが示された。
論文 参考訳(メタデータ) (2020-05-02T23:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。