Frustratingly Simple Entity Tracking with Effective Use of Multi-Task
Learning Models
- URL: http://arxiv.org/abs/2210.06444v1
- Date: Wed, 12 Oct 2022 17:46:16 GMT
- Title: Frustratingly Simple Entity Tracking with Effective Use of Multi-Task
Learning Models
- Authors: Janvijay Singh, Fan Bai, Zhen Wang
- Abstract summary: We present SET, a frustratingly Simple-yet-effective approach for entity tracking in procedural text.
Compared with state-of-the-art entity tracking models that require domain-specific pre-training, SET simply fine-tunes off-the-shelf T5 with customized formats.
We show that T5's supervised multi-task learning plays an important role in the success of SET.
- Score: 5.9585526937249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SET, a frustratingly Simple-yet-effective approach for Entity
Tracking in procedural text. Compared with state-of-the-art entity tracking
models that require domain-specific pre-training, SET simply fine-tunes
off-the-shelf T5 with customized formats and gets comparable or even better
performance on multiple datasets. Concretely, SET tackles the state and
location prediction in entity tracking independently and formulates them as
multi-choice and extractive QA problems, respectively. Through a series of
careful analyses, we show that T5's supervised multi-task learning plays an
important role in the success of SET. In addition, we reveal that SET has a
strong capability of understanding implicit entity transformations, suggesting
that multi-task transfer learning should be further explored in future entity
tracking research.
Related papers
- TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
We consider harnessing the amazing power of language models (LLMs) to solve our task.
We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets.
arXiv Detail & Related papers (2024-01-24T04:28:50Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
We compare sequential fine-tuning with a model for multi-task learning in the context of boosting performance on two tasks.
Our results show that while sequential multi-task learning can be tuned to be good at the first of two target tasks, it performs less well on the second and additionally struggles with overfitting.
arXiv Detail & Related papers (2022-10-31T13:26:08Z) - Multi-task Active Learning for Pre-trained Transformer-based Models [22.228551277598804]
Multi-task learning, in which several tasks are jointly learned by a single model, allows NLP models to share information from multiple annotations.
This technique requires annotating the same text with multiple annotation schemes which may be costly and laborious.
Active learning (AL) has been demonstrated to optimize annotation processes by iteratively selecting unlabeled examples.
arXiv Detail & Related papers (2022-08-10T14:54:13Z) - FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue [70.65782786401257]
This work explores conversational task transfer by introducing FETA: a benchmark for few-sample task transfer in open-domain dialogue.
FETA contains two underlying sets of conversations upon which there are 10 and 7 tasks annotated, enabling the study of intra-dataset task transfer.
We utilize three popular language models and three learning algorithms to analyze the transferability between 132 source-target task pairs.
arXiv Detail & Related papers (2022-05-12T17:59:00Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
This paper proposes Comprehensive Instruction (CINS) that exploits PLMs with task-specific instructions.
We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD.
Experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data.
arXiv Detail & Related papers (2021-09-10T03:23:06Z) - Weighted Training for Cross-Task Learning [71.94908559469475]
We introduce Target-Aware Weighted Training (TAWT), a weighted training algorithm for cross-task learning.
We show that TAWT is easy to implement, is computationally efficient, requires little hyper parameter tuning, and enjoys non-asymptotic learning-theoretic guarantees.
As a byproduct, the proposed representation-based task distance allows one to reason in a theoretically principled way about several critical aspects of cross-task learning.
arXiv Detail & Related papers (2021-05-28T20:27:02Z) - Learning Modality-Specific Representations with Self-Supervised
Multi-Task Learning for Multimodal Sentiment Analysis [11.368438990334397]
We develop a self-supervised learning strategy to acquire independent unimodal supervisions.
We conduct extensive experiments on three public multimodal baseline datasets.
Our method achieves comparable performance than human-annotated unimodal labels.
arXiv Detail & Related papers (2021-02-09T14:05:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.