Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning
- URL: http://arxiv.org/abs/2301.02494v1
- Date: Fri, 6 Jan 2023 13:12:59 GMT
- Title: Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning
- Authors: Xuewen Tao and Mingming Ha and Xiaobo Guo and Qiongxu Ma and Hongwei
Cheng and Wenfang Lin
- Abstract summary: We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
- Score: 1.0765359420035392
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-task learning (MTL) has been successfully implemented in many
real-world applications, which aims to simultaneously solve multiple tasks with
a single model. The general idea of multi-task learning is designing kinds of
global parameter sharing mechanism and task-specific feature extractor to
improve the performance of all tasks. However, sequential dependence between
tasks are rarely studied but frequently encountered in e-commence online
recommendation, e.g. impression, click and conversion on displayed product.
There is few theoretical work on this problem and biased optimization object
adopted in most MTL methods deteriorates online performance. Besides, challenge
still remains in balancing the trade-off between various tasks and effectively
learn common and specific representation. In this paper, we first analyze
sequential dependence MTL from rigorous mathematical perspective and design a
dependence task learning loss to provide an unbiased optimizing object. And we
propose a Task Aware Feature Extraction (TAFE) framework for sequential
dependence MTL, which enables to selectively reconstruct implicit shared
representations from a sample-wise view and extract explicit task-specific
information in an more efficient way. Extensive experiments on offline datasets
and online A/B implementation demonstrate the effectiveness of our proposed
TAFE.
Related papers
- AdapMTL: Adaptive Pruning Framework for Multitask Learning Model [5.643658120200373]
AdapMTL is an adaptive pruning framework for multitask models.
It balances sparsity allocation and accuracy performance across multiple tasks.
It showcases superior performance compared to state-of-the-art pruning methods.
arXiv Detail & Related papers (2024-08-07T17:19:15Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
We propose a novel multi-task learning (MTL) architecture designed to mitigate task interference while optimizing inference computational efficiency.
We employ a learnable gating mechanism to automatically balance the shared and task-specific representations while preserving the performance of all tasks.
arXiv Detail & Related papers (2024-02-26T18:59:52Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
We propose to formulate MTL as a multi/bi-level optimization problem, and therefore force features to learn from each task in a cooperative approach.
Specifically, we update the sub-model for each task alternatively taking advantage of the learned sub-models of the other tasks.
To alleviate the negative transfer problem during the optimization, we search for flat minima for the current objective function.
arXiv Detail & Related papers (2023-09-21T14:00:11Z) - STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map [4.263847576433289]
Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL)
However, MTL is often challenging because there is an exponential number of possible task groupings.
We propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping.
arXiv Detail & Related papers (2023-07-07T03:54:26Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.