論文の概要: Anomaly Detection via Federated Learning
- arxiv url: http://arxiv.org/abs/2210.06614v1
- Date: Wed, 12 Oct 2022 22:40:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 15:06:54.172249
- Title: Anomaly Detection via Federated Learning
- Title(参考訳): 連合学習による異常検出
- Authors: Marc Vucovich, Amogh Tarcar, Penjo Rebelo, Narendra Gade, Ruchi
Porwal, Abdul Rahman, Christopher Redino, Kevin Choi, Dhruv Nandakumar,
Robert Schiller, Edward Bowen, Alex West, Sanmitra Bhattacharya, Balaji
Veeramani
- Abstract要約: 本稿では,クライアントサーバ上で悪意あるネットワーク活動を検出するための,フェデレーション学習による新しい異常検出手法を提案する。
FedSamと呼ばれる新しいmin-maxスカラーとサンプリング技術を用いて、フェデレーション学習により、グローバルモデルが各クライアントのデータから学習できると判断した。
- 参考スコア(独自算出の注目度): 3.0755847416657613
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning has helped advance the field of anomaly detection by
incorporating classifiers and autoencoders to decipher between normal and
anomalous behavior. Additionally, federated learning has provided a way for a
global model to be trained with multiple clients' data without requiring the
client to directly share their data. This paper proposes a novel anomaly
detector via federated learning to detect malicious network activity on a
client's server. In our experiments, we use an autoencoder with a classifier in
a federated learning framework to determine if the network activity is benign
or malicious. By using our novel min-max scalar and sampling technique, called
FedSam, we determined federated learning allows the global model to learn from
each client's data and, in turn, provide a means for each client to improve
their intrusion detection system's defense against cyber-attacks.
- Abstract(参考訳): 機械学習は、正常な動作と異常な振る舞いを解読するために分類器とオートエンコーダを組み込むことで、異常検出の分野を前進させた。
さらに、フェデレートされた学習は、クライアントに直接データを共有することなく、グローバルモデルを複数のクライアントのデータでトレーニングする方法を提供する。
本稿では,クライアントサーバ上での悪意あるネットワーク活動を検出するための,フェデレーション学習による新しい異常検出手法を提案する。
実験では,フェデレート学習フレームワークの分類器を用いたオートエンコーダを用いて,ネットワーク活動が良性であるか悪質であるかを判定する。
新たなmin-maxスカラーとサンプリング技術であるFedSamを用いて,フェデレーション学習により,グローバルモデルで各クライアントのデータから学習が可能となり,各クライアントがサイバー攻撃に対する侵入検知システムの防御を改善する手段が提供されることが分かった。
関連論文リスト
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Network Anomaly Detection Using Federated Learning [0.483420384410068]
我々は、効率的なネットワーク異常検出を可能にする堅牢でスケーラブルなフレームワークを導入する。
複数の参加者が共同でグローバルモデルをトレーニングするフェデレーション学習を活用します。
提案手法はUNSW-NB15データセットのベースライン機械学習手法よりも優れている。
論文 参考訳(メタデータ) (2023-03-13T20:16:30Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Abuse and Fraud Detection in Streaming Services Using Heuristic-Aware
Machine Learning [0.45880283710344055]
本研究は,ユーザのストリーミング動作をモデル化することで,ストリーミングサービスに対する不正・悪用検出フレームワークを提案する。
本研究では,半教師付きアプローチと,異常検出のための教師付きアプローチについて検討する。
私たちの知る限りでは、実世界のストリーミングサービスにおいて、不正行為の検出と不正検出に機械学習を使った最初の論文である。
論文 参考訳(メタデータ) (2022-03-04T03:57:58Z) - UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label
Inference Attacks Against Split Learning [0.0]
Split Learningフレームワークは、モデルをクライアントとサーバ間で分割することを目的としている。
分割学習パラダイムは深刻なセキュリティリスクを生じさせ,セキュリティの誤った感覚以上のものを提供しないことを示す。
論文 参考訳(メタデータ) (2021-08-20T07:39:16Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Provably Secure Federated Learning against Malicious Clients [31.85264586217373]
悪意のあるクライアントは、グローバルモデルを破損させて、テスト例の誤ったラベルを予測することができます。
我々のアンサンブル・フェデレーション・ラーニングとベース・フェデレーション・ラーニング・アルゴリズムは、悪意のあるクライアントに対して確実に安全であることを示す。
本手法は,1000件中20件のクライアントが悪意のある場合,MNISTに対して88%の認証精度を達成できる。
論文 参考訳(メタデータ) (2021-02-03T03:24:17Z) - Adversarial Robustness through Bias Variance Decomposition: A New
Perspective for Federated Learning [41.525434598682764]
フェデレーション学習は、プライバシ保護制約の下で分散クライアントのグループからの知識を集約することで、ニューラルネットワークモデルを学ぶ。
このパラダイムは、集中型ニューラルネットワークの敵対的脆弱性を継承する可能性がある。
本稿では,サーバとクライアントの更新機構を改善したFed_BVAという,対角的に堅牢なフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-18T18:58:25Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。