Tripartite entanglement measure under local operations and classical
communication
- URL: http://arxiv.org/abs/2210.06700v2
- Date: Sun, 3 Dec 2023 11:52:44 GMT
- Title: Tripartite entanglement measure under local operations and classical
communication
- Authors: Xiaozhen Ge, Lijun Liu, and Shuming Cheng
- Abstract summary: We study the concurrence fill, which admits a geometric interpretation to measure genuine tripartite entanglement.
Our results shed light on studying genuine entanglement and also reveal the complex structure of multipartite systems.
- Score: 0.6759148939470331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multipartite entanglement is an indispensable resource in quantum
communication and computation, however, it is a challenging task to faithfully
quantify this global property of multipartite quantum systems. In this work, we
study the concurrence fill, which admits a geometric interpretation to measure
genuine tripartite entanglement for the three-qubit system in [S. Xie {\it et
al.}, Phys. Rev. Lett. \textbf{127}. 040403 (2021)]. First, we use the
well-known three-tangle and bipartite concurrence to reformulate this
quantifier for all pure states. We then construct an explicit example to
conclusively show the concurrence fill can be increased under local operation
and classical communications (LOCCs) {\it on average}, implying it is not an
entanglement monotone. Moreover, we give a simple proof of the
LOCC-monotonicity of three-tangle and find that the bipartite concurrence and
the squared can have distinct performances under the same LOCCs. Finally, we
propose a reliable monotone to quantify genuine tripartite entanglement, which
can also be easily generalised to the multipartite system. Our results shed
light on studying genuine entanglement and also reveal the complex structure of
multipartite systems.
Related papers
- Deriving three-outcome permutationally invariant Bell inequalities [0.0]
We present strategies to derive Bell inequalities valid for systems composed of many three-level parties.
Our work can have interesting applications in the detection of Bell correlations in paradigmatic spin-1 models, as well as in experiments with solid-state systems or atomic ensembles.
arXiv Detail & Related papers (2024-06-17T17:41:27Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Multipartite entanglement theory with entanglement-nonincreasing
operations [91.3755431537592]
We extend the resource theory of entanglement for multipartite systems beyond the standard framework of local operations and classical communication.
We demonstrate that in this adjusted framework, the transformation rates between multipartite states are fundamentally dictated by the bipartite entanglement entropies of the respective quantum states.
arXiv Detail & Related papers (2023-05-30T12:53:56Z) - Criteria of genuine multipartite entanglement based on correlation
tensors [0.0]
We revisit the genuine multipartite entanglement by a simplified method, which only involves the Schmidt decomposition and local unitary transformation.
We construct a local unitary equivalent class of the tri-qubit quantum state, then use the trace norm of the whole correlation tensor as a measurement to detect genuine multipartite entanglement.
arXiv Detail & Related papers (2023-01-16T15:08:33Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
We show that the family of quantum triangle distributions of [DOI40103/PhysRevLett.123.140] did not admit triangle-local models in a larger range than the original proof.
We produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.
arXiv Detail & Related papers (2022-03-30T18:00:00Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Unextendible entangled bases and more nonlocality with less entanglement [0.0]
We show that the phenomenon of more nonlocality with less entanglement can be observed for two qubits, while still being at the single-copy level.
The results are potentially useful for secure quantum communication technologies with an optimal amount of resources.
arXiv Detail & Related papers (2021-03-16T15:33:44Z) - Convicting emergent multipartite entanglement with evidence from a
partially blind witness [0.0]
Genuine multipartite entanglement underlies correlation experiments corroborating quantum mechanics.
We show that the effect can be found in the context of Gaussian states of bosonic systems.
Our results pave the way to effective diagnostics methods of global properties of multipartite states without complete tomography.
arXiv Detail & Related papers (2021-03-12T14:52:47Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z) - Quantifying the unextendibility of entanglement [13.718093420358827]
Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility.
We present a framework for quantifying and investigating the unextendibility of general bipartite quantum states.
arXiv Detail & Related papers (2019-11-18T05:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.