Nonlocality of Quantum States can be Transitive
- URL: http://arxiv.org/abs/2412.10505v2
- Date: Wed, 28 May 2025 02:14:22 GMT
- Title: Nonlocality of Quantum States can be Transitive
- Authors: Kai-Siang Chen, Gelo Noel M. Tabia, Chung-Yun Hsieh, Yu-Chun Yin, Yeong-Cherng Liang,
- Abstract summary: We show that there exists a quantum-realizable notion of nonlocality transitivity.<n>Surprisingly, the nonlocality transitivity of quantum states also occurs among the reduced states of Haar-random three-qutrit pure states.<n>We present a simple method to construct quantum states and correlations that are nonlocal in all their non-unipartite marginals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As a striking manifestation of quantum entanglement, nonlocality has long played a pivotal role in shaping our understanding of the quantum world. When considering a Bell test involving three parties, we may even find a remarkable situation where the nonlocality in two bipartite subsystems {\em forces} the remaining bipartite subsystem to exhibit nonlocality. This intriguing effect, dubbed nonlocality transitivity, was first identified in the non-quantum non-signaling world in 2011. However, whether such transitivity could manifest within quantum theory has remained unresolved -- until now. Here, we provide the first affirmative answer to this open problem at the level of quantum states, thereby showing that there exists a quantum-realizable notion of nonlocality transitivity. Specifically, by leveraging the possibility of Bell-inequality violation by tensoring, we analytically construct a pair of nonlocal bipartite states such that simultaneously realizing them in a tripartite system induces nonlocality in the remaining bipartite subsystem. En route to showing this, we also prove that multiple copies of the $W$-state marginals uniquely determine the global compatible state, thus establishing another instance when the parts determine the whole. Surprisingly, the nonlocality transitivity of quantum states also occurs among the reduced states of Haar-random three-qutrit pure states. We further show that the transitivity of quantum steering can already be demonstrated with the marginals of a three-qubit $W$ state, showing again another noteworthy difference between the two forms of quantum correlations. Finally, we present a simple method to construct quantum states and correlations that are nonlocal in all their non-unipartite marginals, which may be of independent interest.
Related papers
- Controlling nonlocality of bipartite qubit states via quantum channels [0.6906005491572401]
We analyze quantum channels derived from a class of two-qubit states known as the X states.
In particular, we consider X states that break the Bell's CHSH condition and then characterize the associated inverse Choi-Jamiolkowski maps.
arXiv Detail & Related papers (2024-07-22T20:21:26Z) - Locally inaccessible hidden quantum correlations [0.0]
We prove, modulo a conjecture on quantum steering ellipsoids being true, the existence of the phenomenon of locally inaccessible hidden quantum correlations.
We show examples of two-qubit states with locally inaccessible hidden quantum correlations and, furthermore, two-qubit states with locally inaccessible maximal hidden quantum correlations.
arXiv Detail & Related papers (2024-06-06T10:43:39Z) - Nonlocality activation in a photonic quantum network [0.44270590458998854]
Bell nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation.
We show that single copies of Bell-local states can give rise to nonlocality after being embedded into a quantum network of multiple parties.
Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications.
arXiv Detail & Related papers (2023-09-12T18:14:49Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Detection of Beyond-Quantum Non-locality based on Standard Local Quantum
Observables [46.03321798937856]
We show that device independent detection cannot distinguish beyond-quantum non-local states from standard quantum states.
This paper gives a device dependent detection based on local observables to distinguish any beyond-quantum non-local state from all standard quantum states.
arXiv Detail & Related papers (2023-01-10T20:19:34Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - From nonlocality quantifiers for behaviors to nonlocality quantifiers
for states [58.720142291102135]
We define an alternative way of quantifying nonlocality of states based on Bell nonlocality of behaviors, called the trace-weighted nonlocal volume.
The construction is based on the nonlocal volume, a quantifier of nonlocality for states that counts the volume of the set of measurements that give rise to nonlocal behaviors when applied to this state, plus the trace distance.
We show that the weak anomaly of nonlocality for the (2, 2, 3) scenario persists, but the local minimum for nonlocality with the trace-weighted nonlocal volume occurs in a different state as compared to the minimum for the
arXiv Detail & Related papers (2022-04-13T17:29:50Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
We show that the family of quantum triangle distributions of [DOI40103/PhysRevLett.123.140] did not admit triangle-local models in a larger range than the original proof.
We produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.
arXiv Detail & Related papers (2022-03-30T18:00:00Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Separability and entanglement in superpositions of quantum states [0.0]
We study the superpositions of a pure entangled state and a pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
All such superpositions produce only entangled states if the initial entangled state has Schmidt rank three or higher.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local discrimination of shared quantum ensembles.
arXiv Detail & Related papers (2021-08-04T19:48:29Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Unextendible entangled bases and more nonlocality with less entanglement [0.0]
We show that the phenomenon of more nonlocality with less entanglement can be observed for two qubits, while still being at the single-copy level.
The results are potentially useful for secure quantum communication technologies with an optimal amount of resources.
arXiv Detail & Related papers (2021-03-16T15:33:44Z) - Unbounded Bell violations for quantum genuine multipartite non-locality [0.5156484100374058]
Bell inequalities by measurements on quantum states give rise to the phenomenon of quantum non-locality.
We show that while in the so-called correlation scenario the relative violation of bilocal Bell inequalities by quantum resources is bounded, it does not grow arbitrarily with the number of inputs.
We identify Bell functionals that take the form of non-local games for which the ratio of the quantum and bilocal values grows unboundedly as a function of the number of inputs and outputs.
arXiv Detail & Related papers (2020-02-28T09:28:27Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.